Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Geometric interpretation and proof  





2 Further proofs  



2.1  First method  





2.2  Second method  





2.3  Third method  





2.4  Fourth method  







3 See also  





4 Notes  





5 References & further reading  





6 External links  














Weitzenböck's inequality






العربية
Deutsch
Français

Italiano

Português
Suomi

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


According to Weitzenböck's inequality, the area of this triangle is at most (a2 + b2 + c2) ⁄ 4√3.

Inmathematics, Weitzenböck's inequality, named after Roland Weitzenböck, states that for a triangle of side lengths , , , and area , the following inequality holds:

Equality occurs if and only if the triangle is equilateral. Pedoe's inequality is a generalization of Weitzenböck's inequality. The Hadwiger–Finsler inequality is a strengthened version of Weitzenböck's inequality.

Geometric interpretation and proof[edit]

Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof.[1]

Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of the original triangle.

This can now be shown by replicating area of the triangle three times within the equilateral triangles. To achieve that the Fermat point is used to partition the triangle into three obtuse subtriangles with a angle and each of those subtriangles is replicated three times within the equilateral triangle next to it. This only works if every angle of the triangle is smaller than , since otherwise the Fermat point is not located in the interior of the triangle and becomes a vertex instead. However if one angle is greater or equal to it is possible to replicate the whole triangle three times within the largest equilateral triangle, so the sum of areas of all equilateral triangles stays greater than the threefold area of the triangle anyhow.

Further proofs[edit]

The proof of this inequality was set as a question in the International Mathematical Olympiad of 1961. Even so, the result is not too difficult to derive using Heron's formula for the area of a triangle:

First method[edit]

It can be shown that the area of the inner Napoleon's triangle, which must be nonnegative, is[2]

so the expression in parentheses must be greater than or equal to 0.

Second method[edit]

This method assumes no knowledge of inequalities except that all squares are nonnegative.

and the result follows immediately by taking the positive square root of both sides. From the first inequality we can also see that equality occurs only when and the triangle is equilateral.

Third method[edit]

This proof assumes knowledge of the AM–GM inequality.

As we have used the arithmetic-geometric mean inequality, equality only occurs when and the triangle is equilateral.

Fourth method[edit]

Write so the sum and i.e. . But , so .

See also[edit]

Notes[edit]

  1. ^ Claudi Alsina, Roger B. Nelsen: Geometric Proofs of the Weitzenböck and Hadwiger–Finsler Inequalities. Mathematics Magazine, Vol. 81, No. 3 (Jun., 2008), pp. 216–219 (JSTOR)
  • ^ Coxeter, H.S.M., and Greitzer, Samuel L. Geometry Revisited, page 64.
  • References & further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Weitzenböck%27s_inequality&oldid=1224775790"

    Categories: 
    Elementary geometry
    Triangle inequalities
    Hidden category: 
    Articles containing proofs
     



    This page was last edited on 20 May 2024, at 11:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki