Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The enveloping algebra is semisimple  





2 Application: preservation of Jordan decomposition  





3 Proofs  



3.1  Analytic proof  





3.2  Algebraic proof 1  





3.3  Algebraic proof 2  





3.4  Algebraic proof 3  







4 Algebraic proof 4  





5 External links  





6 References  














Weyl's theorem on complete reducibility






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over issemisimple as a module (i.e., a direct sum of simple modules.)[1]

The enveloping algebra is semisimple[edit]

Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way.

Given a finite-dimensional Lie algebra representation , let be the associative subalgebra of the endomorphism algebra of V generated by . The ring A is called the enveloping algebra of . If is semisimple, then A is semisimple.[2] (Proof: Since A is a finite-dimensional algebra, it is an Artinian ring; in particular, the Jacobson radical J is nilpotent. If V is simple, then implies that . In general, J kills each simple submodule of V; in particular, J kills V and so J is zero.) Conversely, if A is semisimple, then V is a semisimple A-module; i.e., semisimple as a -module. (Note that a module over a semisimple ring is semisimple since a module is a quotient of a free module and "semisimple" is preserved under the free and quotient constructions.)

Application: preservation of Jordan decomposition[edit]

Here is a typical application.[3]

Proposition — Let be a semisimple finite-dimensional Lie algebra over a field of characteristic zero.[a]

  1. There exists a unique pair of elements in such that , is semisimple, is nilpotent and .
  2. If is a finite-dimensional representation, then and , where denote the Jordan decomposition of the semisimple and nilpotent parts of the endomorphism .

In short, the semisimple and nilpotent parts of an element of are well-defined and are determined independent of a faithful finite-dimensional representation.

Proof: First we prove the special case of (i) and (ii) when is the inclusion; i.e., is a subalgebra of . Let be the Jordan decomposition of the endomorphism , where are semisimple and nilpotent endomorphisms in . Now, also has the Jordan decomposition, which can be shown (see Jordan–Chevalley decomposition) to respect the above Jordan decomposition; i.e., are the semisimple and nilpotent parts of . Since are polynomials in then, we see . Thus, they are derivations of . Since is semisimple, we can find elements in such that and similarly for . Now, let A be the enveloping algebra of ; i.e., the subalgebra of the endomorphism algebra of V generated by . As noted above, A has zero Jacobson radical. Since , we see that is a nilpotent element in the center of A. But, in general, a central nilpotent belongs to the Jacobson radical; hence, and thus also . This proves the special case.

In general, is semisimple (resp. nilpotent) when is semisimple (resp. nilpotent).[clarification needed] This immediately gives (i) and (ii).

Proofs[edit]

Analytic proof[edit]

Weyl's original proof (for complex semisimple Lie algebras) was analytic in nature: it famously used the unitarian trick. Specifically, one can show that every complex semisimple Lie algebra is the complexification of the Lie algebra of a simply connected compact Lie group .[4] (If, for example, , then .) Given a representation of on a vector space one can first restrict to the Lie algebra of. Then, since is simply connected,[5] there is an associated representation of. Integration over produces an inner product on for which is unitary.[6] Complete reducibility of is then immediate and elementary arguments show that the original representation of is also completely reducible.

Algebraic proof 1[edit]

Let be a finite-dimensional representation of a Lie algebra over a field of characteristic zero. The theorem is an easy consequence of Whitehead's lemma, which says is surjective, where a linear map is a derivationif. The proof is essentially due to Whitehead.[7]

Let be a subrepresentation. Consider the vector subspace that consists of all linear maps such that and . It has a structure of a -module given by: for ,

.

Now, pick some projection onto W and consider given by . Since is a derivation, by Whitehead's lemma, we can write for some . We then have ; that is to say is-linear. Also, as t kills , is an idempotent such that . The kernel of is then a complementary representation to .

Algebraic proof 2[edit]

Whitehead's lemma is typically proved by means of the quadratic Casimir element of the universal enveloping algebra,[8] and there is also a proof of the theorem that uses the Casimir element directly instead of Whitehead's lemma.

Since the quadratic Casimir element is in the center of the universal enveloping algebra, Schur's lemma tells us that acts as multiple of the identity in the irreducible representation of with highest weight . A key point is to establish that isnonzero whenever the representation is nontrivial. This can be done by a general argument [9] or by the explicit formula for .

Consider a very special case of the theorem on complete reducibility: the case where a representation contains a nontrivial, irreducible, invariant subspace of codimension one. Let denote the action of on. Since is not irreducible, is not necessarily a multiple of the identity, but it is a self-intertwining operator for . Then the restriction of to is a nonzero multiple of the identity. But since the quotient is a one dimensional—and therefore trivial—representation of , the action of on the quotient is trivial. It then easily follows that must have a nonzero kernel—and the kernel is an invariant subspace, since is a self-intertwiner. The kernel is then a one-dimensional invariant subspace, whose intersection with is zero. Thus, is an invariant complement to , so that decomposes as a direct sum of irreducible subspaces:

.

Although this establishes only a very special case of the desired result, this step is actually the critical one in the general argument.

Algebraic proof 3[edit]

The theorem can be deduced from the theory of Verma modules, which characterizes a simple module as a quotient of a Verma module by a maximal submodule.[10] This approach has an advantage that it can be used to weaken the finite-dimensionality assumptions (on algebra and representation).

Let be a finite-dimensional representation of a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero. Let be the Borel subalgebra determined by a choice of a Cartan subalgebra and positive roots. Let . Then is an -module and thus has the -weight space decomposition:

where . For each , pick and the -submodule generated by and the -submodule generated by . We claim: . Suppose . By Lie's theorem, there exists a -weight vector in ; thus, we can find an -weight vector such that for some among the Chevalley generators. Now, has weight . Since is partially ordered, there is a such that ; i.e., . But this is a contradiction since are both primitive weights (it is known that the primitive weights are incomparable.[clarification needed]). Similarly, each is simple as a -module. Indeed, if it is not simple, then, for some , contains some nonzero vector that is not a highest-weight vector; again a contradiction.[clarification needed]

Algebraic proof 4[edit]

There is also a quick homological algebra proof; see Weibel's homological algebra book.

External links[edit]

References[edit]

  1. ^ Editorial note: this fact is usually stated for a field of characteristic zero, but the proof needs only that the base field be perfect.
  1. ^ Hall 2015 Theorem 10.9
  • ^ Jacobson 1979, Ch. II, § 5, Theorem 10.
  • ^ Jacobson 1979, Ch. III, § 11, Theorem 17.
  • ^ Knapp 2002 Theorem 6.11
  • ^ Hall 2015 Theorem 5.10
  • ^ Hall 2015 Theorem 4.28
  • ^ Jacobson 1979, Ch. III, § 7.
  • ^ Hall 2015 Section 10.3
  • ^ Humphreys 1973 Section 6.2
  • ^ Kac 1990, Lemma 9.5.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Weyl%27s_theorem_on_complete_reducibility&oldid=1233714251"

    Categories: 
    Lie algebras
    Theorems in representation theory
    Hidden categories: 
    Wikipedia articles needing clarification from October 2020
    Wikipedia articles needing clarification from September 2020
    Articles to be expanded from July 2024
    All articles to be expanded
    Articles using small message boxes
     



    This page was last edited on 10 July 2024, at 14:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki