Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Scientific developments  



2.1  Response to COVID  







3 See also  





4 References  





5 External links  














Wyss Institute for Biologically Inspired Engineering







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Coordinates: 42°2252N 71°0659W / 42.38122°N 71.11626°W / 42.38122; -71.11626
 

From Wikipedia, the free encyclopedia
 


Wyss Institute for Biologically Inspired Engineering
MottoBreakthrough discoveries cannot change the world if they do not leave the lab
Parent institutionHarvard University
Founder(s)Hansjörg Wyss
Established2009; 15 years ago (2009)
MissionTransform healthcare, industry, and the environment by emulating the way nature builds.[1]
FocusBioengineering, Bionics
HeadDonald E. Ingber
Location , ,
U.S.
Websitewyss.harvard.edu

The Wyss Institute for Biologically Inspired Engineering (pronounced vs "veese") is a cross-disciplinary research instituteatHarvard University focused on bridging the gap between academia and industry (translational medicine) by drawing inspiration from nature's design principles to solve challenges in health care and the environment. It is focused on the field of biologically inspired engineering to be distinct from bioengineering and biomedical engineering. The institute also has a focus on applications, intellectual property generation, and commercialization.[2]

The Wyss Institute is located in Boston's Longwood Medical Area and has 375 full-time staff.[3] The Wyss is organized around eight focus areas, each of which integrate faculty, postdocs, fellows, and staff scientists. The focus areas are bioinspired therapeutics & diagnostics, diagnostics accelerator, immuno-materials, living cellular devices, molecular robotics, 3D organ engineering, predictive bioanalytics and synthetic biology.[4]

History[edit]

Hansjörg Wyss, benefactor of the Wyss Institute

In 2005, Harvard University established a faculty working group to envision the future of bioengineering.[5] The group was called the Harvard Institute for Biologically Inspired Engineering (HIBIE), with the committee focused on synthetic biology, living materials, and biological control.[6] HIBIE was co-chaired by Harvard professors Donald E. Ingber and David J. Mooney. In January 2009, institute was reformed into the Wyss Institute upon receiving a $125 million gift from Hansjörg Wyss. Ingber became the founding director of the Wyss Institute and David Mooney became a founding Core Faculty member, along with Professors Joanna Aizenberg, David A. Edwards, Kit Parker, George M. Whitesides, George Church, Ary Goldberger, William Shih, Robert Wood, James J. Collins, L. Mahadevan, Radhika Nagpal, and Pamela Silver.[7]

In 2013, Hansjörg Wyss gave another $125 million to Harvard University, doubling his initial gift. The funding was used to further the institute's interdisciplinary research, which includes DNA engineering, cleaning toxins from blood, vibrating insoles to help older adults maintain balance, and a melanoma cancer vaccine.[8] In 2019, Hansjörg Wyss donated a third gift of $131 million to the Wyss Institute.[3] In 2020, the Wyss Institute and Northpond Ventures, a Maryland-based venture capital firm, created the Laboratory for Bioengineering Research and Innovation at the Wyss Institute. The $12 million funding supports research related to RNA therapies, genome engineering, and new drug delivery methods.[9][10][11]

Within its first ten years, the institute also spun out 29 startup companies to commercialize Wyss Institute developments.[3]

Scientific developments[edit]

The institute was originally founded with fourteen faculty from Harvard University. The institute had around 40 scientists and engineers as a part of the Advanced Technology Team organized around six technology platforms and two cross-platform initiatives across the fields of adaptive material technologies, bioinspired soft robotics, biomimetic microsystems, immuno-materials, living cellular devices, molecular robotics, synthetic biology, and 3D organ engineering.[2][12] The Wyss Institute has been responsible for a number of scientific developments and spinoffs.

Lung-on-a-Chip, as developed by the Wyss Institute
U.S. Army evaluates DARPA's futuristic soft exosuit, originated at the Wyss Institute

Response to COVID[edit]

During the COVID-19 pandemic, the Wyss Institute was engaged in several notable efforts. This included the development of a diagnostic face mask that can detect SARS-CoV-2 RNA in the wearer's breath,[49][50] and the application of the eRapid technology to detect the nucleic acids of the genome of SARS-CoV-2.[51] The technology would be licensed by Antisoma Therapeutics as a point-of-care diagnostic test for COVID-19.[52] The identification of undocumented nucleic acid contamination during routine experiments, which inadvertently caused false positives for COVID-19,[53] led to the development of new safety protocols to protect researchers and ensure data integrity.[54] New nasal swabs that could be manufactured quickly and more easily which launched the startup Rhinostics.[55][56][57] Use of computational approaches and organ-chips to repurpose FDA-approved drugs like Amodiaquine to prevent or treat COVID-19.[58][59]

See also[edit]

References[edit]

  1. ^ "FAQ". Wyss Institute. Retrieved 9 May 2022.
  • ^ a b Tolikas, M; Antoniou, A; Ingber, DE (September 2017). "The Wyss institute: A new model for medical technology innovation and translation across the academic-industrial interface". Bioengineering & Translational Medicine. 2 (3): 247–257. doi:10.1002/btm2.10076. PMC 5689495. PMID 29313034.
  • ^ a b c Kuznitz, Alison (June 7, 2019). "Harvard alumnus donates $131m to research institute". BostonGlobe.com. Retrieved 2022-03-17.
  • ^ "Wyss Institute | Wyss Institute at Harvard". Wyss Institute. Retrieved 2022-03-17.
  • ^ Mone, Gregory (April 2013). "Better Nature". Discover Magazine. Retrieved 2022-03-17.
  • ^ "Engineering Bioengineering". Harvard Magazine. January 2009. Retrieved 2022-03-17.
  • ^ Tolikas, Mary; Antoniou, Ayis; Ingber, Donald E. (August 11, 2017). "The Wyss institute: A new model for medical technology innovation and translation across the academic-industrial interface". Bioengineering & Translational Medicine. 2 (3): 247–257. doi:10.1002/btm2.10076. ISSN 2380-6761. PMC 5689495. PMID 29313034.
  • ^ Johnson, Carolyn Y. (May 21, 2013). "Entrepreneur gives $125m to Harvard". BostonGlobe.com. Retrieved 2022-03-17.
  • ^ DeAngelis, Allison (November 20, 2020). "The Petri Dish: Wyss Institute's VC partnership and a health tech firm eyes M&A". www.bizjournals.com. Retrieved 2022-03-17.
  • ^ "Wyss gives $131 million more to Harvard institute that bears his name". Harvard Gazette. 7 June 2019.
  • ^ "Launching the field of Biologically Inspired Engineering". Wyss Institute. 18 October 2016.
  • ^ "The Wyss Institute Model". Wyss Institute. 14 September 2017.
  • ^ Wenner Moyer, Melinda (March 1, 2011). "Organs-on-a-Chip for Faster Drug Development". Scientific American.
  • ^ Gebelhoff, Robert (June 18, 2015). "Researchers across the country are putting organs on chips". Washington Post. ISSN 0190-8286. Retrieved 2022-03-18.
  • ^ Harris, Richard (January 2, 2015). "Researchers Create Artificial Organs That Fit In Your Hand". NPR. Retrieved 2022-03-18.
  • ^ Bluestein, Adam (2022-03-08). "The 10 most innovative biotech companies in 2022". Fast Company. Retrieved 2022-03-18.
  • ^ Walrath, Rowan (September 7, 2021). "Organ-on-a-chip maker Emulate eyes expansion with $82M round". Boston Business Journal. Retrieved 2022-03-18.
  • ^ Saltzman, Jonathan (February 20, 2018). "2 pharma giants, Calif. hospital to use Boston firm's 'organ-on-a-chip'". Boston Globe. Retrieved 2022-03-18.
  • ^ "Harvard Biodesign Lab". biodesign.seas.harvard.edu. Retrieved 2022-03-18.
  • ^ Subbaraman, Nidhi (June 25, 2013). "Real-life super-powered 'exosuit': Better, faster, stronger ... softer". NBC News. Retrieved 2022-03-18.
  • ^ Wasserman, Emily (May 17, 2016). "ReWalk, Wyss Institute team up for lower-limb exoskeleton development". Fierce Biotech. Retrieved 2022-03-18.
  • ^ "FDA Issues Clearance for the ReStore™ Exo-Suit, the First Soft Robotic System for Stroke Therapy". PR Newswire. June 4, 2019. Retrieved 2022-03-18.
  • ^ "Cross-disciplinary team from Harvard University and Dana-Farber Cancer Institute brings novel therapeutic cancer vaccine to human clinical trials". Wyss Institute. September 6, 2013. Retrieved 2022-03-17.
  • ^ Bradt, Steve (November 25, 2009). "First cancer vaccine to eliminate tumors in mice". Harvard Gazette. Retrieved 2022-03-17.
  • ^ Scanlon, Jessie (August 2, 2018). "Boston's biotech boom could bring bold new treatments for cancer - The Boston Globe". BostonGlobe.com. Retrieved 2022-03-17.
  • ^ Groopman, Jerome (November 17, 2014). "Print Thyself". The New Yorker. Retrieved 2022-03-17.
  • ^ Garth, Eleanor (February 22, 2022). "Kidney replacement therapies facilitated by new Wyss engineering tech". Longevity.technology - Latest News, Opinions, Analysis and Research. Retrieved 2022-03-17.
  • ^ Gellerman, Bruce (November 22, 2017). "How 3D Bioprinting Could Revolutionize Organ Replacement". www.wbur.org. Retrieved 2022-03-17.
  • ^ McNeil, Donald G. Jr. (2016-05-06). "Rapid Zika Test Is Introduced by Researchers". The New York Times. ISSN 0362-4331. Retrieved 2022-03-24.
  • ^ Smith, Amelia (October 28, 2014). "New Pocket-Sized Blotter Test Can Detect Ebola Strains in Just 30 Minutes". Newsweek. Retrieved 2022-03-17.
  • ^ "Sherlock Biosciences Launches to Provide Better, Faster and More Affordable Diagnostic Testing Worldwide Through Engineering Biology". www.businesswire.com. March 21, 2019. Retrieved 2022-03-17.
  • ^ Orcutt, Mike (September 18, 2015). "A Portable Blood Cleanser for Treating Sepsis". MIT Technology Review. Retrieved 2022-03-17.
  • ^ Sridharan, Rukmani (May 19, 2021). "GARNET Pathogen Filter to Treat Sepsis: Exclusive with Nisha Varma, COO of BOA Biomedical | Medgadget". www.medgadget.com. Retrieved 2022-03-17.
  • ^ Quinn, Cristina (October 8, 2015). "WATCH: The Robotic Glove Of The Future". GBH News. Retrieved 2022-03-18.
  • ^ Gates, Bill (January 8, 2019). "Bots, britches, and bees". Gates Notes: The Blog of Bill Gates. Retrieved 2022-03-18.
  • ^ Edwards, David (March 3, 2022). "Baker-Polito Administration awards Harvard and Boston universities $3 million for assistive robotics research". Robotics & Automation News. Retrieved 2022-03-18.
  • ^ Bichell, Rae Ellen (July 27, 2017). "Slug Slime Inspires Scientists To Invent Sticky Surgical Glue". NPR. Retrieved 2022-03-18.
  • ^ a b LeMieux, Julianna; PhD (December 3, 2019). "AAV Optimization on the Fast-Track Hopes to Advance Gene Therapies". GEN - Genetic Engineering and Biotechnology News. Retrieved 2022-03-17.
  • ^ Walrath, Rowan (May 6, 2021). "George Church-founded gene therapy startup gets $100M cash infusion". www.bizjournals.com. Retrieved 2022-03-17.
  • ^ Kriegman, Sam; Blackiston, Douglas; Levin, Michael; Bongard, Josh (2020-01-28). "A scalable pipeline for designing reconfigurable organisms". Proceedings of the National Academy of Sciences of the United States of America. 117 (4): 1853–1859. Bibcode:2020PNAS..117.1853K. doi:10.1073/pnas.1910837117. ISSN 0027-8424. PMC 6994979. PMID 31932426.
  • ^ Simon, Matt (January 13, 2020). "Meet Xenobot, an Eerie New Kind of Programmable Organism". Wired. ISSN 1059-1028. Retrieved 2022-03-18.
  • ^ Sokol, Joshua (2020-04-03). "Meet the Xenobots, Virtual Creatures Brought to Life". The New York Times. ISSN 0362-4331. Retrieved 2022-03-18.
  • ^ Jessie Yeung (14 January 2020). "Scientists have built the world's first living, self-healing robots". CNN. Retrieved 2022-03-18.
  • ^ Lin, Connie (2021-11-30). "The world's first 'living robots' can self-replicate, furthering hope for regenerative medicine". Fast Company. Retrieved 2022-03-18.
  • ^ Lin, Kevin (July 16, 2021). "How a 3D-printed graft could speed healing of ruptured eardrums". STAT. Retrieved 2022-03-18.
  • ^ Haseltine, William A. (August 9, 2021). "Healing Ruptured Eardrums With A New 3-D Printed Graft". Forbes. Retrieved 2022-03-18.
  • ^ Walrath, Rowan (March 30, 2021). "Inside the Wyss Institute project engineering 'fats on demand'". Boston Business Journal. Retrieved 2022-03-18.
  • ^ Leff, Jessica (April 27, 2021). "The power duo creating the future of sustainability". Wyss Institute. Retrieved 2022-03-18.
  • ^ Oliver, Suzanne (2021-03-27). "High-Tech Face Masks Aim to Step Up the Fight Against Covid-19". Wall Street Journal. ISSN 0099-9660. Retrieved 2022-03-18.
  • ^ Verma, Pranshu (June 29, 2021). "A face mask that can detect COVID? Harvard, MIT researchers have the technology to make it possible". The Boston Globe. Retrieved 2022-03-18.
  • ^ LeMieux, Julianna (August 2, 2021). "Methods to Detect Viruses Get a Boost, Thanks to the COVID-19 Response". Genetic Engineering and Biotechnology News. Retrieved 2022-03-18.
  • ^ "The iQ Group Global secures worldwide license for Harvard University's eRapid technology for at-home diagnostic testing". Yahoo! Finance. March 8, 2022. Retrieved 2022-03-18.
  • ^ Robinson-McCarthy, Lindsey R.; Mijalis, Alexander J.; Filsinger, Gabriel T.; de Puig, Helena; Donghia, Nina M.; Schaus, Thomas E.; Rasmussen, Robert A.; Ferreira, Raphael; Lunshof, Jeantine E.; Chao, George; Ter-Ovanesyan, Dmitry (2021-01-15). "Anomalous COVID-19 tests hinder researchers". Science. 371 (6526): 244–245. Bibcode:2021Sci...371..244R. doi:10.1126/science.abf8873. ISSN 0036-8075. PMID 33446547. S2CID 231606801.
  • ^ Wu, Katherine J. (2020-11-12). "These Researchers Tested Positive. But the Virus Wasn't the Cause". The New York Times. ISSN 0362-4331. Retrieved 2022-03-18.
  • ^ Quinn, Cristina (May 4, 2020). "In The Age Of Coronavirus, How Doctors Are Becoming Inventors". GBH News. Retrieved 2022-03-18.
  • ^ Walrath, Rowan (June 18, 2021). "Will Fast Friendships Last?". Boston Business Journal. Retrieved 2022-03-18.
  • ^ "Harvard University licenses nasal swab collection technology to Rhinostics". Medical Device Network. May 5, 2021. Retrieved 2022-03-18.
  • ^ Walrath, Rowan (June 18, 2020). "Wyss Institute gets $16M to repurpose FDA-approved drugs for Covid-19". Boston Business Journal. Retrieved 2022-03-18.
  • ^ Weintraub, Arlene (2021-05-03). "How new 'lung-on-a-chip' models from Harvard are advancing COVID-19 drug discovery". Fierce Biotech. Retrieved 2022-03-18.
  • External links[edit]

    42°22′52N 71°06′59W / 42.38122°N 71.11626°W / 42.38122; -71.11626


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Wyss_Institute_for_Biologically_Inspired_Engineering&oldid=1216597079"

    Categories: 
    2009 establishments in Massachusetts
    Biotechnology organizations
    Engineering research institutes
    Harvard University research institutes
    Independent research institutes
    Medical research institutes in Massachusetts
    Laboratories in the United States
    Multidisciplinary research institutes
    Organizations established in 2009
    Science and technology in Massachusetts
    Hidden categories: 
    Pages using gadget WikiMiniAtlas
    Articles with short description
    Short description is different from Wikidata
    Coordinates on Wikidata
    Articles with VIAF identifiers
    Articles with MoMA identifiers
     



    This page was last edited on 31 March 2024, at 23:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki