Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Selected publications  





2 References  





3 External links  














Zvi Bern






Deutsch
Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Zvi Bern
Professor Zvi Bern at ICTP-SAIFR in Sao Paulo, Brazil
Born (1960-09-17) 17 September 1960 (age 63)
NationalityAmerican
CitizenshipUnited States
Alma materMassachusetts Institute of Technology (B.S.)
University of California, Berkeley (Ph.D.)
Known forDouble copy theory, Generalized Unitarity Method, Scattering Amplitudes
AwardsFellow of the American Physical Society (2004)
Sakurai Prize (2014)
Galileo Galilei Medal (2023)
Scientific career
FieldsTheoretical Physics, Quantum Field Theory, Supergravity, String Theory
InstitutionsMani L. Bhaumik Institute for Theoretical Physics, UCLA
University of California, Los Angeles
Doctoral advisorMartin B. Halpern

Zvi Bern (born 17 September 1960) is an American theoretical particle physicist. He is a professor at University of California, Los Angeles (UCLA).

Bern studied physics and mathematics at the Massachusetts Institute of Technology and earned his doctorate in 1986 in theoretical physics from the University of California, Berkeley under the supervision of Martin Halpern.[1][2] Bern's dissertation manuscript can currently be found in Lawrence Berkeley Laboratory's archives, examining "possible nonperturbative continuum regularization schemes for quantum field theory which are based upon the Langevin equation of Parisi and Wu."[3]

Bern developed new methods for the computation of Feynman diagrams that were originally introduced in quantum electrodynamics for the perturbative computation of scattering amplitudes. In more complicated quantum field theories such as Yang–Mills theory or quantum field theories with gravity, the computer calculation of the perturbative evolution using Feynman diagrams quickly reached its limits due to the exponential growth in diagrams. The new theoretical developments of the 1990s and 2000s came in time for a renewed interest in extensive calculations in the context of the experiments at the Large Hadron Collider. Bern and colleagues developed twistor-space methods applied to gauge-theory amplitudes.[4] Bern and colleagues developed the method of "generalized unitarity as a means for obtaining loop amplitudes from on-shell tree amplitudes".[5] The method of generalized unitarity provided new insights into the perturbative treatment of N = 8 supergravity and showed that there is a smaller degree of divergence than expected; higher-loop evidence suggested that "N = 8 supergravity has the same degree of divergence as N = 4 super-Yang–Mills theory and is ultraviolet finite in four dimensions".[6] Prior to this, it had been generally assumed that quantum gravitation from three loops resulted in uncontrollable divergences. In 2010, with his students Carrasco and Johansson, Bern found that diagrams for supersymmetric gravitational theories are equivalent to those of two copies of supersymmetric Yang–Mills theories (theories with gluons), which is known as double copy theory. They used a previously found duality between kinematics and color degrees of freedom. Instead of previously around terms, only 10 terms had to be evaluated in 3 loops, and correspondingly in 4 loops around 100 terms versus terms, and in 5 loops around 1000 terms versus terms; furthermore, there were no uncontrollable divergences in three and four loops — such uncontrollable divergences were predicted by the majority of experts in the 1980s and constituted one of the reasons for favoring string theory.

Bern was elected in 2004 a fellow of the American Physical Society.[7] In 2014, he received the Sakurai Prize with David A. Kosower and Lance J. Dixon for "pathbreaking contributions to the calculation of perturbative scattering amplitudes, which led to a deeper understanding of quantum field theory and to powerful new tools for computing QCD processes."[8] In 2023, Bern and his collaborators David A Kosower and Lance J Dixon were awarded Galileo Galilei Medal from Italy’s Instituto Nazionale di Fisica.[9]

Bern's Erdős number is three.[10] Currently, Bern is the director of the Mani Lal Bhaumik Institute for Theoretical Physics at UCLA, which aims to "provide an exceptional environment for excellence in theoretical physics research".[11]

He was elected a Member of the National Academy of Sciences in 2024.[12]

Selected publications

[edit]

References

[edit]
  • ^ Smith, Ella (28 February 2018). "Renowned UC Berkeley physics professor emeritus Martin Halpern dies at 79". The Daily Californian, UC Berkeley newspaper.
  • ^ "CONTINUUM REGULARIZATION OF QUANTUM FIELD THEORY" (PDF). Lawrence Berkeley Laboratory Archives.
  • ^ Bena, Iosif; Bern, Zvi; Kosower, David A. (2005). "Twistor-space recursive formulation of gauge-theory amplitudes". Phys. Rev. D. 71 (4): 045008. arXiv:hep-th/0406133. Bibcode:2005PhRvD..71d5008B. doi:10.1103/PhysRevD.71.045008. S2CID 119401595.
  • ^ Bern, Zvi; Huang, Yu-tin (2011). "Basis of generalized unitarity". Journal of Physics A: Mathematical and Theoretical. 44 (45): 454003. arXiv:1103.1869. Bibcode:2011JPhA...44S4003B. doi:10.1088/1751-8113/44/45/454003. S2CID 119231853.
  • ^ Bern, Zvi; Dixon, Lance J.; Roiban, Radu (2007). "Is N = 8 Supergravity Ultraviolet Finite?". Physics Letters B. 644 (4): 265–271. arXiv:hep-th/0611086. Bibcode:2007PhLB..644..265B. doi:10.1016/j.physletb.2006.11.030. S2CID 119532539. arXiv preprint
  • ^ "APS Fellow Archive". American Physical Society. (search on year=2004 and institution=University of California, Los Angeles)
  • ^ "2014 J.J. Sakurai Prize for Theoretical Particle Physics Recipient, Zvi Bern". American Physical Society website.
  • ^ "Zvi Bern receives Galileo Galilei Medal".
  • ^ "Zvi Bern, UCLA Physics and Astronomy".
  • ^ "UCLA Mani L. Bhaumik Institute".
  • ^ https://www.nasonline.org/news-and-multimedia/news/2024-nas-election.html
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Zvi_Bern&oldid=1224431156"

    Categories: 
    1960 births
    Living people
    Massachusetts Institute of Technology School of Science alumni
    UC Berkeley College of Letters and Science alumni
    University of California, Los Angeles faculty
    Fellows of the American Physical Society
    American particle physicists
    21st-century American physicists
    J. J. Sakurai Prize for Theoretical Particle Physics recipients
    Members of the United States National Academy of Sciences
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles with hCards
    Articles with ISNI identifiers
    Articles with VIAF identifiers
    Articles with WorldCat Entities identifiers
    Articles with LCCN identifiers
    Articles with Google Scholar identifiers
    Articles with MATHSN identifiers
    Articles with MGP identifiers
    Articles with ORCID identifiers
    Articles with ZBMATH identifiers
     



    This page was last edited on 18 May 2024, at 11:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki