Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Nature of bacterial conjugation  





2 References  














Zygotic induction







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Zygotic induction occurs when a bacterial cell carrying the silenced DNA of a bacterial virus in its chromosome transfers the viral DNA along with its own DNA to another bacterial cell lacking the virus, causing the recipient of the DNA to break open.[1] In the donor cell, a repressor protein encoded by the prophage (viral DNA) keeps the viral genes turned off so that virus is not produced. When DNA is transferred to the recipient cell by conjugation, the viral genes in the transferred DNA are immediately turned on because the recipient cell lacks the repressor. As a result, many virus are made in the recipient cell, and lysis eventually occurs to release the new virus.

Zygotic induction was discovered by Élie Wollman and François Jacob in 1954.[2] Historically, zygotic induction provided insight into the nature of bacterial conjugation. It also contributed to the development of the early repression model of gene regulation that explained how the lac operon and λ bacteriophage genes are negatively regulated.[3]

Nature of bacterial conjugation

[edit]

In 1947, Joshua Lederberg and Edward Tatum discovered that nutritional mutants of the bacterium E. coli, when incubated in mixed cultures, exchanged genetic markers to generate new recombinants, although the mating efficiency was inefficient.[4] Later experiments with E. coli strains that mated at a high frequency, which were called Hfr (high frequency of recombinants), revealed how genetic markers were transferred.

Élie Wollman and François Jacob showed that genes were transferred in a certain order from the Hfr donor cell to the F recipient cell during mating. The longer that the Hfr and F cells were in contact, the more genes that were transferred. They did not believe that the entire donor chromosome was typically transferred to the recipient.[5] On the other hand, Lederberg had an alternative explanation for the apparent ordered transfer of part of the chromosome. In analogy with fertilization and meiosis of higher organisms, he proposed that all of the genetic material was transferred but that breakage of the donor chromosome occurred at specific locations so that segments of the donor chromosome could be deleted.[6]

Zygotic induction was discovered while the location of prophage λ was being mapped using Hfr x F matings. When the F was lysogenic for λ, lysogeny was mapped to the gal locus. However, when the Hfr parent was lysogenic, lysogeny (i.e., the prophage) was not inherited by any of recombinants, which were recovered by growing them as colonies on the appropriate agar medium. The reason is that transfer of the λ prophage into the F recipient was accompanied by immediate induction of bacteriophage production within the F cell. Subsequent lysis of this "zygote" released the new bacteriophage particles. If mating terminated before the prophage was transferred, phage was not produced, and recombination proceeded in the zygote. These observations provided evidence that genetic markers was transferred in one direction during conjugation, from the Hfr to F cell. These experiments also showed that Lederberg's model was incorrect since zygotic induction would have prevented any recombinant from forming had all of the chromosome from the Hfr cell were to be transferred to the F cell.[7]

References

[edit]
  1. ^ Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. "An Introduction to Genetic Analysis". NCBI Bookshelf. Retrieved 7 November 2016.
  • ^ Brock TD (1990). The Emergence of Bacterial Genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. p. 97. ISBN 978-0879693503.
  • ^ Brock TD (1990). The Emergence of Bacterial Genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. p. 181. ISBN 978-0879693503.
  • ^ Lederberg J, Tatum EL (1946). "Gene recombination in Escherichia coli". Nature. 158 (4016): 558. Bibcode:1946Natur.158..558L. doi:10.1038/158558a0. PMID 21001945. S2CID 1826960.
  • ^ Brock TD (1990). The Emergence of Bacterial Genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. pp. 96–97. ISBN 978-0879693503.
  • ^ Lederberg J (1955). "Genetic recombination in bacteria". Science. 122 (3176): 920. Bibcode:1955Sci...122..920L. doi:10.1126/science.122.3176.920. PMID 13274050. S2CID 33350056.
  • ^ Wollman EL, Jacob F, Hayes W (1956). "Conjugation and genetic recombination in Escherichia coli K-12". Cold Spring Harbor Symposia on Quantitative Biology. 21: 141–62. doi:10.1101/sqb.1956.021.01.012. PMID 13433587.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Zygotic_induction&oldid=1198979142"

    Category: 
    Virology
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 25 January 2024, at 15:22 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki