Physics beyond the Standard Model, BSMCP-[1]

 (MSSM)  (NMMSM) M

1

標準模型の問題

編集

[2]
 
素粒子と仮想のグラビトンの標準模型

説明できない現象

編集



[3]

5%26%[]

69%120[4]



-[]

説明できない実験結果

編集

5



調



  --7[5]4%[6]

   "g  2"[7]

B  BaBar (B  D(*) τ ντ) BBD3.4[8]2015LHCb2.1[9][10]2017SM5[11]

観測されていない理論的予測

編集

 SU(2)201274LHCCERN126 GeV/c22013314[12]

[13]

理論的問題

編集

[]

  調[14]調[?]

  19[?][]

  [15]

CP  CP0[16]調[?]

大統一理論

編集

3 SU(3) SU(2) U(1)31016 GeV 311[17]5SU(5)10SO(10)[18]

(GUT)GUT[19][20]GUT

超対称性

編集

1/2

ニュートリノ

編集

0[21]2eV5[22][23]

1[24][25]keV[26]LHC[27][28][29]GUT[30][31]

CKMPMNS[32]調CP(leptogenesis)[18]

WIMP(Weakly interacting massive particles)[33]

プレオン模型

編集

31Rishon[34][35][36]


万物の理論

編集



(M)E8

超対称性

編集

ループ量子重力理論

編集

[37][38]

ひも理論

編集

1[37]

1995String ConferenceM[39][40][41]M

関連項目

編集

脚注

編集


(一)^ Beyond the Standard Model. Symmetry Magazine (20052). 2007101720101123

(二)^  Lykken, J. D. (2010). Beyond the Standard Model. CERN Yellow Report. CERN. pp. 101109. arXiv:1005.1676. Bibcode: 2010arXiv1005.1676L. CERN-2010-002 

(三)^ Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K. (2011). New Experimental Limits on Non-Newtonian Forces in the Micrometer Range. Physical Review Letters 107 (17): 171101. arXiv:1108.2547. Bibcode: 2011PhRvL.107q1101S. doi:10.1103/PhysRevLett.107.171101. PMID 22107498. "It is remarkable that two of the greatest successes of 20th century physics, general relativity and the standard model, appear to be fundamentally incompatible."  But see also Donoghue, John F. (2012). The effective field theory treatment of quantum gravity. AIP Conference Proceedings 1473 (1): 73. arXiv:1209.3511. Bibcode: 2012AIPC.1483...73D. doi:10.1063/1.4756964. "One can find thousands of statements in the literature to the effect that general relativity and quantum mechanics are incompatible. These are completely outdated and no longer relevant. Effective field theory shows that general relativity and quantum mechanics work together perfectly normally over a range of scales and curvatures, including those relevant for the world that we see around us. However, effective field theories are only valid over some range of scales. General relativity certainly does have problematic issues at extreme scales. There are important problems which the effective field theory does not solve because they are beyond its range of validity. However, this means that the issue of quantum gravity is not what we thought it to be. Rather than a fundamental incompatibility of quantum mechanics and gravity, we are in the more familiar situation of needing a more complete theory beyond the range of their combined applicability. The usual marriage of general relativity and quantum mechanics is fine at ordinary energies, but we now seek to uncover the modifications that must be present in more extreme conditions. This is the modern view of the problem of quantum gravity, and it represents progress over the outdated view of the past."" 

(四)^ Krauss, L. (2009). A Universe from Nothing. AAI Conference.

(五)^ Randolf Pohl; Ronald Gilman; Gerald A. Miller; Krzysztof Pachucki (2013). Muonic hydrogen and the proton radius puzzle. Annu. Rev. Nucl. Part. Sci. 63: 175204. arXiv:1301.0905. Bibcode: 2013ARNPS..63..175P. doi:10.1146/annurev-nucl-102212-170627. "The recent determination of the proton radius using the measurement of the Lamb shift in the muonic hydrogen atom startled the physics world. The obtained value of 0.84087(39) fm differs by about 4% or 7 standard deviations from the CODATA value of 0.8775(51) fm. The latter is composed from the electronic hydrogenate atom value of 0.8758(77) fm and from a similar value with larger uncertainties determined by electron scattering." 

(六)^ Carlson, Carl E. (May 2015). The Proton Radius Puzzle. Progress in Particle and Nuclear Physics 82: 5977. arXiv:1502.05314. Bibcode: 2015PrPNP..82...59C. doi:10.1016/j.ppnp.2015.01.002. 

(七)^ Thomas Blum; Achim Denig; Ivan Logashenko; Eduardo de Rafael (2013). "The Muon (g - 2) Theory Value: Present and Future". arXiv:1311.2198

(八)^  Lees, J. P. (2012). Evidence for an excess of B  D(*) τ τν decays. Physical Review Letters 109 (10): 101802. arXiv:1205.5442. Bibcode: 2012PhRvL.109j1802L. doi:10.1103/PhysRevLett.109.101802. PMID 23005279. 

(九)^ Aaij, R. (2015). Measurement of the Ratio of Branching Fractions .... Physical Review Letters 115 (11): 111803. arXiv:1506.08614. Bibcode: 2015PhRvL.115k1803A. doi:10.1103/PhysRevLett.115.111803. PMID 26406820. 

(十)^ Clara Moskowitz (201599). 2 Accelerators Find Particles That May Break Known Laws of Physics. Scientific American. 20199

(11)^ Capdevila, Bernat (2018). Patterns of New Physics in   transitions in the light of recent data. Journal of High Energy Physics 2018: 093. arXiv:1704.05340. doi:10.1007/JHEP01(2018)093. 

(12)^  O'Luanaigh (2013314). New results indicate that new particle is a Higgs boson. CERN. 20199

(13)^ Marco Frasca (2009331). What is a Glueball?. The Gauge Connection. 20199

(14)^ The Hierarchy Problem. Of Particular Significance (2011814). 20151213

(15)^ Callaway, D. J. E. (1988). Triviality Pursuit: Can Elementary Scalar Particles Exist?. Physics Reports 167 (5): 241320. Bibcode: 1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7. 

(16)^ Mannel, Thomas (28 July 2006). "Theory and Phenomenology of CP Violation" (PDF). Nuclear Physics B, vol. 167. The 7th International Conference on Hyperons, Charm And Beauty Hadrons (BEACH 2006). Vol. 167. Lancaster: Elsevier. pp. 170174. Bibcode:2007NuPhS.167..170M. doi:10.1016/j.nuclphysbps.2006.12.083. 2015815

(17)^  Peskin, M. E.; Schroeder, D. V. (1995). An introduction to quantum field theory. Addison-Wesley. pp. 786791. ISBN 978-0-201-50397-5 

(18)^ ab Buchmüller, W. (2002). "Neutrinos, Grand Unification and Leptogenesis". arXiv:hep-ph/0204288

(19)^  Magnetic Monopoles. Particle Data Group (2009). 20101220

(20)^  P., Nath; P. F., Perez (2007). Proton stability in grand unified theories, in strings, and in branes. Physics Reports 441 (56): 191317. arXiv:hep-ph/0601023. Bibcode: 2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. 

(21)^  Peskin, M. E.; Schroeder, D. V. (1995). An introduction to quantum field theory. Addison-Wesley. pp. 713715. ISBN 978-0-201-50397-5. https://archive.org/details/introductiontoqu0000pesk 

(22)^  Nakamura, K. (2010). Neutrino Properties. Particle Data Group. 2012121220101220

(23)^ Mohapatra, R. N.; Pal, P. B. (2007). Massive neutrinos in physics and astrophysics. Lecture Notes in Physics. 72(3rd ed.). World Scientific. ISBN 978-981-238-071-5 

(24)^  Senjanovic, G. (2011). "Probing the Origin of Neutrino Mass: from GUT to LHC". arXiv:1107.5322 [hep-ph]

(25)^  Grossman, Y. (2003). "TASI 2002 lectures on neutrinos". arXiv:hep-ph/0305245v1

(26)^  Dodelson, S.; Widrow, L. M. (1994). Sterile neutrinos as dark matter. Physical Review Letters 72(1): 1720. arXiv:hep-ph/9303287. Bibcode: 1994PhRvL..72...17D. doi:10.1103/PhysRevLett.72.17. PMID 10055555. 

(27)^  Minkowski, P. (1977). μ  e γ at a Rate of One Out of 109 Muon Decays?. Physics Letters B 67(4): 421. Bibcode: 1977PhLB...67..421M. doi:10.1016/0370-2693(77)90435-X. 

(28)^  Mohapatra, R. N.; Senjanovic, G. (1980). Neutrino mass and spontaneous parity nonconservation. Physical Review Letters 44(14): 912. Bibcode: 1980PhRvL..44..912M. doi:10.1103/PhysRevLett.44.912. 

(29)^  Keung, W.-Y.; Senjanovic, G. (1983). Majorana Neutrinos And The Production Of The Right-handed Charged Gauge Boson. Physical Review Letters 50(19): 1427. Bibcode: 1983PhRvL..50.1427K. doi:10.1103/PhysRevLett.50.1427. 

(30)^  Gell-Mann, M.; Ramond, P.; Slansky, R. (1979). P. van Nieuwenhuizen. ed. Supergravity. North Holland 

(31)^  Glashow, S. L. (1979). M. Levy. ed. Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons. Plenum Press 

(32)^  Altarelli, G. (2007). "Lectures on Models of Neutrino Masses and Mixings". arXiv:0711.0161 [hep-ph]

(33)^  Murayama, H. (2007). "Physics Beyond the Standard Model and Dark Matter". arXiv:0704.2276 [hep-ph]

(34)^ Harari, H. (1979). A Schematic Model of Quarks and Leptons. Physics Letters B 86(1): 8386. Bibcode: 1979PhLB...86...83H. doi:10.1016/0370-2693(79)90626-9. OSTI 1447265. https://www.osti.gov/biblio/1447265. 

(35)^ Shupe, M. A. (1979). A Composite Model of Leptons and Quarks. Physics Letters B 86(1): 8792. Bibcode: 1979PhLB...86...87S. doi:10.1016/0370-2693(79)90627-0. 

(36)^ Zenczykowski, P. (2008). The Harari-Shupe preon model and nonrelativistic quantum phase space. Physics Letters B 660 (5): 567572. arXiv:0803.0223. Bibcode: 2008PhLB..660..567Z. doi:10.1016/j.physletb.2008.01.045. 

(37)^ abSmolin, L. (2001). Three Roads to Quantum Gravity. Basic Books. ISBN 978-0-465-07835-6 

(38)^ Abdo, A.A. (2009). A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462 (7271): 331334. arXiv:0908.1832. Bibcode: 2009Natur.462..331A. doi:10.1038/nature08574. PMID 19865083. 

(39)^ Maldacena, J.; Strominger, A.; Witten, E. (1997). Black hole entropy in M-Theory. Journal of High Energy Physics 1997 (12): 2. arXiv:hep-th/9711053. Bibcode: 1997JHEP...12..002M. doi:10.1088/1126-6708/1997/12/002. 

(40)^ Randall, L.; Sundrum, R. (1999). Large Mass Hierarchy from a Small Extra Dimension. Physical Review Letters 83(17): 33703373. arXiv:hep-ph/9905221. Bibcode: 1999PhRvL..83.3370R. doi:10.1103/PhysRevLett.83.3370. 

(41)^ Randall, L.; Sundrum, R. (1999). An Alternative to Compactification. Physical Review Letters 83(23): 46904693. arXiv:hep-th/9906064. Bibcode: 1999PhRvL..83.4690R. doi:10.1103/PhysRevLett.83.4690. 

関連文献

編集

外部リンク

編集