標準模型

素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するためのモデル

: Standard Model: SM3
標準模型
標準模型素粒子

標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。多くの物理現象をほぼ的確に描写する仮説である。

概要

編集

SU(3)c×SU(2)L×U(1)Y CP[1][2]

標準模型の素粒子

編集

標準模型の素粒子は力を媒介するスピン1のゲージ粒子、対称性を破るスピン0のヒッグス粒子、物質を構成するスピン1/2のフェルミオンからなる。

ゲージ粒子

編集
標準模型のゲージ粒子
粒子名 記号 ゲージ対称性
グルーオン G SU(3)c
Wボソン W SU(2)L×U(1)Y
Zボソン Z
光子 A



SU(3)C

SU(2)LU(1)Y SU(2)L W U(1)Y Z

フェルミオン

編集
標準模型のフェルミオン
粒子名 記号 表現
クォーク Q (3,2)1/6
上系列反クォーク U (3*,1)-2/3
下系列反クォーク D (3*,1)1/3
レプトン L (1,2)-1/2
反荷電レプトン E (1,1)1

left-handedright-handed

3CP3CP

ヒッグス粒子

編集

43WZ1020127 (CERN) LHC[3]-

歴史

編集
 

1928 - 

1931 - 

1932 - 

1948 - P

1954 - [4]

1956 -
[5]

[6]

1957 - 60[7]

1964 -
KCP[8]

[9]

[10]

1967 - [11]1968[12]

1971 - [13][14]

1973 -
[15]

[16]H. [17]

Z

1974 - [18][19]11

1977 - ()[20]

1983 - W[21]Z[22]

1995 - [23][24]

2012 - LHC[25][26]
 

未解決の問題

編集

標準模型は2014年現在までに行われた素粒子物理学に関する実験結果をほとんど全て矛盾することなく説明することができているが、その一方で、理論的または実験・観測的観点から解決すべき問題をいくつか抱えている。このことは標準模型を超える物理の存在を示唆する。この節では標準模型において未解決の問題を列挙する。

重力の量子化

編集

標準模型は基本的な相互作用とされる4つの力のうち、電磁気力、弱い力、強い力の3つをヤン=ミルズ理論に基づき量子論的に記述することに成功している。しかし、残りの1つである重力についてはその記述を欠いている。言い換えれば、重力を媒介するとされる重力子は標準模型の粒子のリストに含まれていない。これは、標準模型の基礎的な枠組みとなっている場の量子論における量子効果による発散の相殺を重力理論に適用できないからである。重力を量子論的に扱うことができる枠組みの候補としては、超弦理論ループ量子重力理論などが挙げられる。

大統一理論

編集

33U(1)   SU(5)SO(10) 2014

階層性問題(fine tuning問題)

編集

調1019 GeV102 GeV1

強いCP問題

編集

2014CPCP2調CP

世代構造の謎

編集

312333×3使調1

flavorflavor structure(flavor physics)flavor mixing

ニュートリノ振動

編集

1998年神岡鉱山に設置されたスーパーカミオカンデによりニュートリノ振動が発見された[27]が、これは質量を持ったニュートリノが存在することの証明となっている。標準模型ではニュートリノの質量は厳密に0であるため、この実験結果は標準模型には何らかの修正が必要であることを示すものの一つとして重要である。単純にニュートリノの質量項を標準模型の枠組みに加える場合は右巻きニュートリノを導入すればよいが、標準模型の荷電を用いると右巻きニュートリノはマヨラナ粒子となり右巻きニュートリノだけで組む質量項(マヨラナ質量項)が現れ、質量構造が複雑化する。これを取り入れた枠組みとして代表的なものの一つがシーソー機構である。

暗黒物質

編集

41Z2020

バリオン数の非対称性

編集

2CP[28]

ミューオンの歳差運動のずれ

編集

2001年、ブルックヘブン国立研究所は、ミューオンの歳差運動が、標準模型の予測からずれている実験結果を報告した。2021年にフェルミ国立加速器研究所ミューオンg-2実験でも同様の結果が示された[29][30]

脚注

編集
  1. ^ 南部 et al. 3章(牧二郎 著)
  2. ^ C・ロヴェッリ『すごい物理学講義』河出文庫、2019年、168頁。 
  3. ^ “Latest update in the search for the Higgs boson”. CERN. (2012年7月4日). http://indico.cern.ch/conferenceDisplay.py?confId=197461 2012年7月4日閲覧。 
  4. ^ Chen-Ning Yang and Robert L. Mills (1954). “Conservation of Isotopic Spin and Isotopic Gauge Invariance”. Physical Review 96: 191. doi:10.1103/PhysRev.96.191. 
  5. ^ T. D. Lee and Chen-Ning Yang (1956). “Question of Parity Conservation in Weak Interactions”. Physical Review 104: 254. doi:10.1103/PhysRev.104.254. 
  6. ^ C. L. Cowan, F. Reines, F. B. Harrison, H. W. Kruse and A. D. McGuire (1956). “Detection of the free neutrino: A Confirmation”. Science 124: 103. doi:10.1126/science.124.3212.103. 
  7. ^ C. S. Wu, E. Ambler, R. W. Harvard, D. D. Hoppes and R. P. Hudson (1957). “Experimental Test Of Parity Conservation In Beta Decay”. Physical Review 105: 1413. doi:10.1103/PhysRev.105.1413. 
  8. ^ J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay (1964). “Evidence for the 2 pi Decay of the k(2)0 Meson”. Physical Review Letters 13: 138. doi:10.1103/PhysRevLett.13.138. 
  9. ^ Murrey Gell-Mann (1964). “A Schematic Model of Baryons and Mesons”. Physics Letters 8: 214. doi:10.1016/S0031-9163(64)92001-3. 
  10. ^ Peter W. Higgs (1964). “Broken symmetries, massless particles and gauge fields”. Physics Letters 12: 132. doi:10.1016/0031-9163(64)91136-9. 
  11. ^ Steven Weiberg (1967). “A Model of Leptons”. Physical Review Letters 19: 1264. doi:10.1103/PhysRevLett.19.1264. 
  12. ^ Abdus Salam (1968). “Weak and Electromagnetic Interactions”. Conf.Proc. C680519: 367 s. 
  13. ^ Gerard 't Hooft (1971). “Renormalizable Lagrangians for Massive Yang-Mills Fields”. Nuclear Physics B 35: 167. doi:10.1016/0550-3213(71)90139-8. 
  14. ^ Gerard 't Hooft and M. J. G. Veltman (1972). “Regularization and Renormalization of Gauge Fields”. Nuclear Physics B 44: 189. doi:10.1016/0550-3213(72)90279-9. 
  15. ^ Makoto Kobayashi and Toshihide Maskawa (1973). “CP Violation in the Renormalizable Theory of Weak Interaction”. Progress of Theoretical Physics 49: 652. doi:10.1143/PTP.49.652. 
  16. ^ D. J. Gross and Frank Wilczek (1973). “Ultraviolet Behavior of Nonabelian Gauge Theories”. Physical Review Letters 30: 1343. doi:10.1103/PhysRevLett.30.1343. 
  17. ^ H. David Politzer (1973). “Reliable Perturbative Results for Strong Interactions?”. Physical Review Letters 30: 1346. doi:10.1103/PhysRevLett.30.1346. 
  18. ^ E598 Collaboration (1974). “Experimental Observation of a Heavy Particle J”. Physical Review Letters 33: 1404. doi:10.1103/PhysRevLett.33.1404. 
  19. ^ SLAC-SP-017 Collaboration (1974). “Discovery of a Narrow Resonance in e+ e- Annihilation”. Physical Review Letters 33: 1406. doi:10.1103/PhysRevLett.33.1406. 
  20. ^ S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, H. D. Snyder, J. K. Yoh, J. A. Appel, B. C. Brown, C. N. Brown, W. R. Innes, K. Ueno, T. Yamanouchi, A. S. Itoh, H. Jostlein, D. M. Kaplan and R. D. Kephart (1977). “Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions”. Physical Review Letters 39: 252. doi:10.1103/PhysRevLett.39.252. 
  21. ^ UA1 Collaboration (1983). “Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at s**(1/2) = 540-GeV”. Physics Letters B 122: 103. doi:10.1016/0370-2693(83)91177-2. 
  22. ^ UA1 Collaboration (1983). “Experimental Observation of Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN SPS Collider”. Physics Letters B 126: 398. doi:10.1016/0370-2693(83)90188-0. 
  23. ^ CDF Collaboration (1995). “Observation of top quark production in ppbar collisions”. Physical Review Letters 74: 2626. doi:10.1103/PhysRevLett.74.2626. 
  24. ^ D0 Collaboration (1995). “Observation of the top quark”. Physical Review Letters 74: 2632. doi:10.1103/PhysRevLett.74.2632. 
  25. ^ ATLAS Collaboration (2012). “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. Physics Letters B 716: 1. doi:10.1016/j.physletb.2012.08.020. 
  26. ^ CMS Collaboration (2012). “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. Physics Letters B 716: 30. doi:10.1016/j.physletb.2012.08.021. 
  27. ^ Super-Kamiokande Collaboration (1998). “Evidence for oscillation of atmospheric neutrinos”. Physical Review Letters 81: 1562. doi:10.1103/PhysRevLett.81.1562. 
  28. ^ Sacha Davidson, Enrico Nardi and, Yosef Nir (2008). “Leptogenesis”. Physics Report 466: 105. doi:10.1016/j.physrep.2008.06.002. 
  29. ^ 素粒子物理学を覆すミューオンの挙動、未知の物理法則が存在か”. ナショナルジオグラフィック日本語版 (2021年4月13日). 2021年4月27日閲覧。
  30. ^ 素粒子「標準理論」のずれ検証に一歩 実験値を高精度測定 米研究所、(朝日新聞、2023年8月11日)

参考文献

編集

論文

編集
  • Beringer, J.; Arguin, J.; Barnett, R.; Copic, K.; Dahl, O.; Groom, D.; Lin, C.; Lys, J. et al. (2012). “Review of Particle Physics”. Physical Review D 86 (1). doi:10.1103/PhysRevD.86.010001. ISSN 1550-7998. 

書籍

編集

関連項目

編集

外部リンク

編集

  ウィキメディア・コモンズには、標準模型に関するメディアがあります。