Generating Function for Elementary Symmetric Function



From ProofWiki



Jump to navigation Jump to search
  • 2 Proof 1
  • 3 Proof 2
  • 4 Proof 3
  • 5 Sources
  • Theorem

    Let $U$ be a set of $n$ numbers $\set {x_1, x_2, \ldots, x_n}$.

    Let $\map {e_m} U$ be the elementary symmetric function of degree $m$ on $U$:

    \(\ds \map {e_m} U\) \(=\) \(\ds \sum_{1 \mathop \le j_1 \mathop < j_2 \mathop < \mathop \cdots \mathop < j_m \mathop \le n} \paren {\prod_{i \mathop = 1}^m x_{j_i} }\)
    \(\ds \) \(=\) \(\ds \sum_{1 \mathop \le j_1 \mathop < j_2 \mathop < \mathop \cdots \mathop < j_m \mathop \le n} x_{j_1} x_{j_2} \cdots x_{j_m}\)

    Let $a_m := \map {e_m} U$ for $m = 0, 1, 2, \ldots$


    Let $\map G z$ be a generating function for the sequence $\sequence {a_m}$:

    $\ds \map G z = \sum_{m \mathop = 0}^\infty a_m z^m$


    Then:

    $\ds \map G z = \prod_{k \mathop = 1}^n \paren {1 + x_k z}$


    Outline

    Generating function discovery methods can find a formula for $\map G z$.

    Let $n = 1$.

    Then $U$ is a singleton:

    $U = \set {x_1}$.

    Expand the formal series:

    \(\ds \map G z\) \(=\) \(\ds \map {e_0} U + \map {e_1} z + \sum_{m \mathop = 2}^\infty 0 z^m\)
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds 1 + x_1 z\) because $\map {e_0} U = 1$ and $\map {e_1} U = x_a$

    Product of Generating Functions and experience with elementary symmetric functions suggests:

    $\map G z = \paren {1 + x_1 z} \paren {1 + x_2 z} \cdots \paren {1 + x_n z}$


    Proof 1

    The summation for $\map G z$ is a finite sum $m = 0, 1, \ldots, n$, which settles convergence issues.

    Begin with Viète's Formulas:

    $\ds \prod_{k \mathop = a}^b \paren {x - x_k} = x^n + \sum_{m \mathop = 0}^{n - 1} \paren {-1}^{n - m} \map {e_{n - m} } U \, x^m$

    Change variables $x = -1 / z$:

    \(\ds \prod_{k \mathop = 1}^n \paren {-\frac 1 z - x_k}\) \(=\) \(\ds \paren {-z}^{-n} + \sum_{m \mathop = 0}^{n - 1} \paren {-1}^{n - m} \map {e_{n - m} } U \, \paren {-z}^{-m}\)
    \(\ds \leadsto \ \ \) \(\ds \prod_{k \mathop = 1}^n \paren {1 + x_k z}\) \(=\) \(\ds z^n + \sum_{m \mathop = 0}^{n - 1} \map {e_{n - m} } U \, \paren z^{n - m}\) all signs cancel
    \(\ds \leadsto \ \ \) \(\ds \prod_{k \mathop = 1}^n \paren {1 + x_k z}\) \(=\) \(\ds \sum_{m \mathop = 0}^n \map {e_m} U \, z^m\)

    $\blacksquare$


    Proof 2

    Apply mathematical induction on $n$.

    Let $\map P n$ be the statement:

    \(\ds \map G z\) \(\equiv\) \(\ds \sum_{m \mathop = 0}^{n + 1} \map {e_m} {\set {x_1, \ldots, x_n} } z^m\)
    \(\ds \) \(=\) \(\ds \prod_{k \mathop = 1}^n \paren {1 + x_k z}\)

    Basis for the induction:

    Set $U = \set {x_1}$ for $n = 1$.

    Expand the formal series:

    \(\ds \map G z\) \(=\) \(\ds \map {e_0} U + \map {e_1} U z + \sum_{m \mathop = 2}^\infty \map {e_m} U z^m\)
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \map {e_0} U + \map {e_1} U z\) as the summation has all zero terms
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds 1 + x_1 z\)

    Then $\map P 1$ holds.

    Induction step:

    Assume $\map P n$ holds.

    Let's prove $\map P {n + 1}$ holds.



    The induction step uses a recursion relation:

    \(\text {(1)}: \quad\) \(\ds \map {e_m} {\set {x_1, \ldots, x_n, x_{n + 1} } }\) \(=\) \(\ds x_{n + 1} \map {e_{m - 1} } {\set {x_1, \ldots, x_n} } + \map {e_m} {\set {x_1, \ldots, x_n} }\) Recursion Property of Elementary Symmetric Function

    Let $\map G z$ be defined by statement $\map P n$.

    Let $\map {G^*} z$ be defined by statement $\map P {n + 1}$.

    Then:

    \(\ds \map {G^*} z\) \(=\) \(\ds \prod_{k \mathop = 1}^{n + 1} \paren {1 + x_k z}\)
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \map G z \paren {1 + x_{n + 1} z}\)
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \map G z + x_{n + 1} z \map G z\)
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \sum_{m \mathop = 0}^n \map {e_m} U z^m + \sum_{m \mathop = 1}^{n+1} x_{n+1} \map {e_{m-1} } U z^m\) use hypothesis $\map P n$
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \map {e_0} U + \sum_{m \mathop = 1}^{n + 1} \paren {\map {e_m} U + x_{n + 1} \map {e_{m - 1} } U} z^m\) because $\map {e_{n+1} } {U} = 0$
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \map {e_0} U + \sum_{m \mathop = 1}^{n + 1} \map {e_m} {\set {x_1, \ldots, x_n, x_{n + 1} } } z^m\) by recursion relation $(1)$
    \(\ds \leadsto \ \ \) \(\ds \) \(=\) \(\ds \sum_{m \mathop = 0}^{n + 1} \map {e_m} {\set {x_1, \ldots, x_n, x_{n + 1} } } z^m\) because $\map {e_0} X = 1$ for all sets $X$

    Then $\map P {n + 1}$ holds, completing the induction.



    $\blacksquare$


    Proof 3

    We have by definition of generating function that:

    $\map G z = \ds \sum_{n \mathop \ge 0} a_n z^n$

    We have that:

    $a_0 = 1$



    Suppose $n = 1$.

    Let $\map G z$ be the generating function for $\sequence {a_m}$ under this condition.

    Then:

    $1 \mathop \le j_1 \mathop < j_2 \mathop < \mathop \cdots \mathop < j_m \mathop \le 1$

    can be fulfilled by only one set $\set {j_1, j_2, \ldots, j_m}$, that is:

    $j_1 = 1$


    Thus in this case:

    \(\ds a_m\) \(=\) \(\ds x_1 \delta_{m 1}\) where $\delta_{m 1}$ is the Kronecker delta.
    \(\ds \leadsto \ \ \) \(\ds \map G z\) \(=\) \(\ds \sum_{n \mathop \ge 0} x_1 \delta_{n 1} z^n\)
    \(\ds \leadsto \ \ \) \(\ds \map G z\) \(=\) \(\ds 1 + x_1 z\)

    Then by Product of Generating Functions, it follows that:

    $\map G z = \paren {1 + x_1 z} \paren {1 + x_2 z} \cdots \paren {1 + x_n z}$




    Sources

    Retrieved from "https://proofwiki.org/w/index.php?title=Generating_Function_for_Elementary_Symmetric_Function&oldid=682326"

    Categories: 
    Proven Results
    Improvements
    Possible Mistake
    Explanation Required
    Unfinished Proofs
    Generating Function for Elementary Symmetric Function
    Elementary Symmetric Functions
    Examples of Generating Functions
    Summations



    Navigation menu


    Personal tools



    Log in
    Request account


    Namespaces



    Page
    Discussion