Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Even and odd functions





Article  

Talk  



Language  

Watch  

Edit  





Inmathematics, an even function is a real function such that for every in its domain. Similarly, an odd function is a function such that for every in its domain.

The sine function and all of its Taylor polynomials are odd functions.
The cosine function and all of its Taylor polynomials are even functions.

They are named for the parity of the powers of the power functions which satisfy each condition: the function is even if n is an even integer, and it is odd if n is an odd integer.

Even functions are those real functions whose graphisself-symmetric with respect to the y-axis, and odd functions are those whose graph is self-symmetric with respect to the origin.

If the domain of a real function is self-symmetric with respect to the origin, then the function can be uniquely decomposed as the sum of an even function and an odd function.

Definition and examples

edit

Evenness and oddness are generally considered for real functions, that is real-valued functions of a real variable. However, the concepts may be more generally defined for functions whose domain and codomain both have a notion of additive inverse. This includes abelian groups, all rings, all fields, and all vector spaces. Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on.

The given examples are real functions, to illustrate the symmetry of their graphs.

Even functions

edit
 
  is an example of an even function.

Areal function fiseven if, for every x in its domain, x is also in its domain and[1]: p. 11    or equivalently  

Geometrically, the graph of an even function is symmetric with respect to the y-axis, meaning that its graph remains unchanged after reflection about the y-axis.

Examples of even functions are:

Odd functions

edit
 
  is an example of an odd function.

A real function fisodd if, for every x in its domain, x is also in its domain and[1]: p. 72    or equivalently  

Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin.

Examples of odd functions are:

 
  is neither even nor odd.

Basic properties

edit

Uniqueness

edit

Addition and subtraction

edit

Multiplication and division

edit

Composition

edit

Even–odd decomposition

edit

If a real function has a domain that is self-symmetric with respect to the origin, it may be uniquely decomposed as the sum of an even and an odd function, which are called respectively the even part and the odd part of the function, and are defined by   and  

It is straightforward to verify that   is even,   is odd, and  

This decomposition is unique since, if

 

where g is even and h is odd, then   and   since

 

For example, the hyperbolic cosine and the hyperbolic sine may be regarded as the even and odd parts of the exponential function, as the first one is an even function, the second one is odd, and

 .

Further algebraic properties

edit

Analytic properties

edit

A function's being odd or even does not imply differentiability, or even continuity. For example, the Dirichlet function is even, but is nowhere continuous.

In the following, properties involving derivatives, Fourier series, Taylor series are considered, and these concepts are thus supposed to be defined for the considered functions.

Basic analytic properties

edit

Series

edit

Harmonics

edit

Insignal processing, harmonic distortion occurs when a sine wave signal is sent through a memory-less nonlinear system, that is, a system whose output at time t only depends on the input at time t and does not depend on the input at any previous times. Such a system is described by a response function  . The type of harmonics produced depend on the response function f:[3]

Note that this does not hold true for more complex waveforms. A sawtooth wave contains both even and odd harmonics, for instance. After even-symmetric full-wave rectification, it becomes a triangle wave, which, other than the DC offset, contains only odd harmonics.

Generalizations

edit

Multivariate functions

edit

Even symmetry:

A function   is called even symmetric if:

 

Odd symmetry:

A function   is called odd symmetric if:

 

Complex-valued functions

edit

The definitions for even and odd symmetry for complex-valued functions of a real argument are similar to the real case. In signal processing, a similar symmetry is sometimes considered, which involves complex conjugation.[4][5]

Conjugate symmetry:

A complex-valued function of a real argument   is called conjugate symmetricif

 

A complex valued function is conjugate symmetric if and only if its real part is an even function and its imaginary part is an odd function.

A typical example of a conjugate symmetric function is the cis function

 

Conjugate antisymmetry:

A complex-valued function of a real argument   is called conjugate antisymmetric if:

 

A complex valued function is conjugate antisymmetric if and only if its real part is an odd function and its imaginary part is an even function.

Finite length sequences

edit

The definitions of odd and even symmetry are extended to N-point sequences (i.e. functions of the form  ) as follows:[5]: p. 411 

Even symmetry:

AN-point sequence is called conjugate symmetricif

 

Such a sequence is often called a palindromic sequence; see also Palindromic polynomial.

Odd symmetry:

AN-point sequence is called conjugate antisymmetricif

 

Such a sequence is sometimes called an anti-palindromic sequence; see also Antipalindromic polynomial.

See also

edit

Notes

edit
  1. ^ a b Gel'Fand, I. M.; Glagoleva, E. G.; Shnol, E. E. (1990). Functions and Graphs. Birkhäuser. ISBN 0-8176-3532-7.
  • ^ W., Weisstein, Eric. "Odd Function". mathworld.wolfram.com.{{cite web}}: CS1 maint: multiple names: authors list (link)
  • ^ Berners, Dave (October 2005). "Ask the Doctors: Tube vs. Solid-State Harmonics". UA WebZine. Universal Audio. Retrieved 2016-09-22. To summarize, if the function f(x) is odd, a cosine input will produce no even harmonics. If the function f(x) is even, a cosine input will produce no odd harmonics (but may contain a DC component). If the function is neither odd nor even, all harmonics may be present in the output.
  • ^ Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 55. ISBN 0-13-754920-2.
  • ^ a b Proakis, John G.; Manolakis, Dimitri G. (1996), Digital Signal Processing: Principles, Algorithms and Applications (3 ed.), Upper Saddle River, NJ: Prentice-Hall International, ISBN 9780133942897, sAcfAQAAIAAJ
  • References

    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Even_and_odd_functions&oldid=1230211882"
     



    Last edited on 21 June 2024, at 11:34  





    Languages

     


    العربية
    Azərbaycanca
    Беларуская
    Български
    Bosanski
    Català
    Чӑвашла
    Čeština
    Cymraeg
    Deutsch
    Español
    Esperanto
    فارسی
    Français

    Հայերեն
    Bahasa Indonesia
    Íslenska
    Italiano
    עברית

    Қазақша
    Кыргызча
    Lietuvių
    Lombard
    Magyar

    Polski
    Português
    Русский

    Slovenščina
    کوردی
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    Tagalog
    ி

    Türkçe
    Українська
    اردو
    Tiếng Vit


     

    Wikipedia


    This page was last edited on 21 June 2024, at 11:34 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop