Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Sawtooth wave





Article  

Talk  



Language  

Watch  

Edit  





The sawtooth wave (orsaw wave) is a kind of non-sinusoidal waveform. It is so named based on its resemblance to the teeth of a plain-toothed saw with a zero rake angle. A single sawtooth, or an intermittently triggered sawtooth, is called a ramp waveform.

Sawtooth wave
A bandlimited sawtooth wave pictured in the time domain and frequency domain.
Abandlimited sawtooth wave[1] pictured in the time domain (top) and frequency domain (bottom). The fundamental is at 220 Hz (A3).
General information
General definition
Fields of applicationElectronics, synthesizers
Domain, codomain and image
Domain
Codomain
Basic features
ParityOdd
Period1
Specific features
Root
Fourier series

The convention is that a sawtooth wave ramps upward and then sharply drops. In a reverse (or inverse) sawtooth wave, the wave ramps downward and then sharply rises. It can also be considered the extreme case of an asymmetric triangle wave.[2]

The equivalent piecewise linear functions

based on the floor function of time t is an example of a sawtooth wave with period 1.

A more general form, in the range −1 to 1, and with period p, is

This sawtooth function has the same phase as the sine function.

While a square wave is constructed from only odd harmonics, a sawtooth wave's sound is harsh and clear and its spectrum contains both even and odd harmonics of the fundamental frequency. Because it contains all the integer harmonics, it is one of the best waveforms to use for subtractive synthesis of musical sounds, particularly bowed string instruments like violins and cellos, since the slip-stick behavior of the bow drives the strings with a sawtooth-like motion.[3]

A sawtooth can be constructed using additive synthesis. For period p and amplitude a, the following infinite Fourier series converge to a sawtooth and a reverse (inverse) sawtooth wave:

Indigital synthesis, these series are only summed over k such that the highest harmonic, Nmax, is less than the Nyquist frequency (half the sampling frequency). This summation can generally be more efficiently calculated with a fast Fourier transform. If the waveform is digitally created directly in the time domain using a non-bandlimited form, such as y = x − floor(x), infinite harmonics are sampled and the resulting tone contains aliasing distortion.

Animation of the additive synthesis of a sawtooth wave with an increasing number of harmonics

An audio demonstration of a sawtooth played at 440 Hz (A4) and 880 Hz (A5) and 1,760 Hz (A6) is available below. Both bandlimited (non-aliased) and aliased tones are presented.

Applications

edit

See also

edit
 
Sine, square, triangle, and sawtooth waveforms

References

edit
  1. ^ Kraft, Sebastian; Zölzer, Udo (5 September 2017). "LP-BLIT: Bandlimited Impulse Train Synthesis of Lowpass-filtered Waveforms". Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17). 20th International Conference on Digital Audio Effects (DAFx-17). Edinburgh. pp. 255–259.
  • ^ "Fourier Series-Triangle Wave - from Wolfram MathWorld". Mathworld.wolfram.com. 2012-07-02. Retrieved 2012-07-11.
  • ^ Dave Benson. "Music: A Mathematical Offering" (PDF). Homepages.abdn.ac.uk. p. 42. Retrieved 26 November 2021.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sawtooth_wave&oldid=1227859833"
     



    Last edited on 8 June 2024, at 05:42  





    Languages

     


    العربية
    Català
    Deutsch
    Eesti
    Español
    فارسی
    Français

    ि
    Italiano
    עברית


    Português
    Shqip
    Suomi
    Svenska
    Türkçe
    Українська

     

    Wikipedia


    This page was last edited on 8 June 2024, at 05:42 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop