Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Tetrafluoroethylene





Article  

Talk  



Language  

Watch  

Edit  





Tetrafluoroethylene (TFE) is a fluorocarbon with the chemical formula C2F4. It is the simplest perfluorinated alkene. This gaseous species is used primarily in the industrial preparation of fluoropolymers.

Tetrafluoroethylene
Tetrafluoroethylene
Tetrafluoroethylene
Tetrafluoroethylene
Tetrafluoroethylene
Names
Preferred IUPAC name

Tetrafluoroethene

Other names

perfluoroethylene
TFE

Identifiers

CAS Number

3D model (JSmol)

ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.752 Edit this at Wikidata
KEGG

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/C2F4/c3-1(4)2(5)6 checkY

    Key: BFKJFAAPBSQJPD-UHFFFAOYSA-N checkY

  • InChI=1/C2F4/c3-1(4)2(5)6

    Key: BFKJFAAPBSQJPD-UHFFFAOYAC

  • FC(F)=C(F)F

Properties

Chemical formula

C2F4
Molar mass 100.02 g/mol
Appearance Colorless gas
Odor Odorless
Density 1.519 g/cm3 at −76 °C
Melting point −142.5 °C (−224.5 °F; 130.7 K)
Boiling point −76.3 °C (−105.3 °F; 196.8 K)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
3
4
3

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

It was first reported as "dicarbon tetrafluoride" in 1890.[2]

Properties

edit

Tetrafluoroethylene is a synthetic colorless, odorless gas that is insoluble in water. Like all unsaturated fluorocarbons, it is susceptible to nucleophilic attack. It is unstable towards decomposition to carbon and carbon tetrafluoride (CF
4
) and prone to form explosive peroxides in contact with air.[3][4]

Industrial use

edit

Polymerization of tetrafluoroethylene produces polytetrafluoroethylene (PTFE) polymers such as Teflon and Fluon. PTFE is one of the two fluorocarbon resins composed wholly of fluorine and carbon. The other resin composed purely of carbon and fluorine is the copolymer of TFE with typically 6–9% hexafluoropropene (HFP), which is known as FEP (fluorinated ethylene propylene copolymer). TFE is also used in the preparation of numerous copolymers that also include hydrogen and/or oxygen, including both fluoroplastics and fluoroelastomers. Typical TFE-based fluoroplastics include ETFE, the alternating 1:1 copolymer with ethylene, and PFA, which is a random copolymer similar to FEP but with a minor amount of a perfluoroalkyl vinyl ether (PAVE) rather than HFP. DuPont uses primarily perfluoro(methylvinylether), whereas Daikin uses primarily perfluoro(propylvinylether) in manufacturing PFA. There are numerous other fluoropolymers that contain tetrafluoroethylene, but usually not at greater than 50% by weight.

Manufacture

edit

TFE is manufactured from chloroform.[5] Chloroform is fluorinated by reaction with hydrogen fluoride to produce chlorodifluoromethane (R-22). Pyrolysis of chlorodifluoromethane (at 550–750 °C) yields TFE, with difluorocarbene as an intermediate.

CHCl3 + 2 HF → CHClF2 + 2 HCl
2 CHClF2 → C2F4 + 2 HCl

Alternatively, it can be prepared by pyrolysis of fluoroform (which is also produced from chloroform and HF):

2 CHF3 → C2F4 + 2 HF

Laboratory methods

edit

A convenient, safe method for generating TFE is the pyrolysis of the sodium salt of pentafluoropropionic acid:[6]

C2F5CO2Na → C2F4 + CO2 + NaF

The depolymerization reaction – vacuum pyrolysis of PTFE at 650–700 °C (1,200–1,290 °F) in a quartz vessel – is a traditional laboratory synthesis of TFE. The process is however challenging because attention must be paid to pressure, as well as the avoidance of perfluoroisobutylene. PTFE polymer cracks, and at a pressure below 5 Torr (670 Pa) exclusively C2F4 is obtained. At higher pressures the product mixture contains hexafluoropropylene and octafluorocyclobutane.[7]

Reactions

edit

Tetrafluoroethylene is a reactive molecule that participates in myriad reactions. Owing to the presence of four fluorine substituents, its reactions differ strongly from the behavior of conventional alkenes such as ethylene. Tetrafluoroethylene dimerizes, giving octafluorocyclobutane. Even normal alkenes and dienes add tetrafluoroethylene in a [2+2] manner. 1,3-Butadiene gives 3-vinyl-1,1,2,2-tetrafluorocyclobutane.[8]

Safety

edit

The main hazard associated with TFE is that of explosion, especially if oxygen is present. TFE reacts with oxygen at low temperatures to form an explosive oxide,[3] the detonation of which is usually sufficient to trigger explosive decomposition of TFE to C and CF4.[9] Explosions can also be caused by adiabatic compression if the TFE is handled under high pressure, which it typically is in an industrial setting. If pressurised TFE is allowed into a vessel or pipework at a lower pressure, then the atmosphere in the vessel will be compressed by the TFE, causing it to heat up, potentially to the point where it might detonate the TFE. This has been known to cause explosions.[10] In industry, pipework is flushed with pressurized nitrogen, before the introduction of TFE, both to exclude oxygen and prevent adiabatic compression.

TFE is an alkylating agent, albeit a weak one, and as such is expected to be a carcinogen. LD50(rat, inhalation) = 40000 ppm.[11]

The International Agency for Research on Cancer classifies TFE as probably carcinogenic to humans based on animal studies.[12]

See also

edit

References

edit
  1. ^ "Hazard Rating Information for NFPA Fire Diamonds". Archived from the original on 2015-02-28. Retrieved 2015-03-15.
  • ^ C. Chabrie "General Method for the Preparation of Carbon Fluorides" in Journal - Chemical Society, London. (1890). UK: Chemical Society.
  • ^ a b Gozzo, F.; Camaggi, G. (January 1966). "Oxidation reactions of tetrafluoroethylene and their products—I". Tetrahedron. 22 (6): 1765–1770. doi:10.1016/S0040-4020(01)82248-1.
  • ^ PubChem. "Tetrafluoroethylene". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-09-25.
  • ^ Siegemund, Günter; Schwertfeger, Werner; Feiring, Andrew; Smart, Bruce; Behr, Fred; Vogel, Herward; McKusick, Blaine; Kirschtitle=Fluorine Compounds, Organic, Peer (2016). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349.pub2. ISBN 978-3527306732.
  • ^ Hercules, Daniel A.; Parrish, Cameron A.; Sayler, Todd S.; Tice, Kevin T.; Williams, Shane M.; Lowery, Lauren E.; Brady, Michael E.; Coward, Robert B.; Murphy, Justin A.; Hey, Trevyn A.; Scavuzzo, Anthony R.; Rummler, Lucy M.; Burns, Emory G.; Matsnev, Andrej V.; Fernandez, Richard E.; McMillen, Colin D.; Thrasher, Joseph S. (2017). "Preparation of tetrafluoroethylene from the pyrolysis of pentafluoropropionate salts". Journal of Fluorine Chemistry. 196: 107–116. doi:10.1016/j.jfluchem.2016.10.004.
  • ^ R. J. Hunadi & K. Baum (1982). "Tetrafluoroethylene: A Convenient Laboratory Preparation". Synthesis. 39 (6): 454. doi:10.1055/s-1982-29830. S2CID 96276938.
  • ^ Roberts, John D.; Sharts, Clay M. (2011). "Cyclobutane Derivatives from Thermal Cycloaddition Reactions". Organic Reactions. pp. 1–56. doi:10.1002/0471264180.or012.01. ISBN 978-0471264187.
  • ^ Fabio, Ferrero; Robert, Zeps; Martin, Kluge; Volkmar, Schröde; Tom, Spoormaker (April 2013). "The explosive decomposition of tetrafluoroethylene: large scale tests and simulations". Chemical Engineering Transactions. 31: 817–822. doi:10.3303/CET1331137.
  • ^ Reza, Ali; Christiansen, Erik (March 2007). "A case study of a TFE explosion in a PTFE manufacturing facility". Process Safety Progress. 26 (1): 77–82. doi:10.1002/prs.10174. S2CID 110305024.
  • ^ NIH Substance Profile for TFE
  • ^ "Terrafluoroethylene" (PDF). International Agency for Research on Cancer. Retrieved 20 May 2020.[permanent dead link]
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tetrafluoroethylene&oldid=1224207557"
     



    Last edited on 16 May 2024, at 22:12  





    Languages

     


    Azərbaycanca
    تۆرکجه
    Deutsch
    Español
    Euskara
    فارسی
    Français
    Bahasa Indonesia
    Italiano
    Кыргызча
    Nederlands

    Oʻzbekcha / ўзбекча
    Polski
    Português
    Русский
    Simple English
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    Türkçe

     

    Wikipedia


    This page was last edited on 16 May 2024, at 22:12 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop