Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  



1.1  Background  





1.2  Astrobiology  







2 Spacecraft  



2.1  Propulsion  







3 Sample return  





4 See also  





5 References  














CAESAR (spacecraft): Difference between revisions






العربية
Deutsch
Français

Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
m Removed 'a(n)' from the beginning of the short description per WP:SDFORMAT, from WP:Reward board. (via WP:JWB)
 
(9 intermediate revisions by 8 users not shown)
Line 1: Line 1:

{{DISPLAYTITLE:CAESAR (spacecraft)}}

{{short description|Proposed sample-return mission to a comet}}

{{short description|Proposed sample-return mission to a comet}}

{{DISPLAYTITLE:CAESAR (spacecraft)}}

{{Infobox spaceflight |auto=all

{{Infobox spaceflight |auto=all

| name = CAESAR

| name = CAESAR

Line 10: Line 10:

| mission_type = [[Sample-return mission|Sample return]]

| mission_type = [[Sample-return mission|Sample return]]

| operator = [[NASA]]

| operator = [[NASA]]

| website = {{url|http://caesar.cornell.edu}}

| website = {{URL|http://caesar.cornell.edu}}

| mission_duration = {{time interval|August 2024|November 2038|show=ym|sep=,}} (proposed)

| mission_duration = {{time interval|August 2024|November 2038|show=ym|sep=,}} (proposed)

Line 16: Line 16:

| dimensions = Solar panels length: 43.5 m <ref name='Squyres Nov2018'>{{cite web |title= PSW 2399 Comets and the Origin of Life |last=Squyres |first=Steven |date=7 November 2018 |publisher=PSW Science |url=https://www.youtube.com/watch?v=aypCA2RTy54 |access-date=2019-03-10}}</ref>

| dimensions = Solar panels length: 43.5 m <ref name='Squyres Nov2018'>{{cite web |title= PSW 2399 Comets and the Origin of Life |last=Squyres |first=Steven |date=7 November 2018 |publisher=PSW Science |url=https://www.youtube.com/watch?v=aypCA2RTy54 |access-date=2019-03-10}}</ref>

| power =

| power =

| launch_date = August 2024 (proposed)<ref name="SBAG18Squyres">{{cite conference|url=https://www.lpi.usra.edu/sbag/meetings/jan2018/presentations/3-15pm-Squyres.pdf|title=CAESAR: Project Overview |conference=18th Meeting of the NASA Small Bodies Assessment Group. 17-18 January 2018. Ames Research Center, California.|publisher=[[Lunar and Planetary Institute]]|first=Steve|last=Squyres|date=2018}}</ref>

| launch_date = August 2024 (proposed)<ref name="SBAG18Squyres">{{cite conference|url=https://www.lpi.usra.edu/sbag/meetings/jan2018/presentations/3-15pm-Squyres.pdf|title=CAESAR: Project Overview |conference=18th Meeting of the NASA Small Bodies Assessment Group. 17–18 January 2018. Ames Research Center, California.|publisher=[[Lunar and Planetary Institute]]|first=Steve|last=Squyres|date=2018}}</ref>



| landing_date = November 2038 (proposed)<ref name="SBAG18Squyres"/><ref name='Messenger 2018'/>

| landing_date = November 2038 (proposed)<ref name="SBAG18Squyres"/><ref name='Messenger 2018'/>

Line 32: Line 32:

| programme = [[New Frontiers program]]

| programme = [[New Frontiers program]]

| previous_mission = [[OSIRIS-REx]]

| previous_mission = [[OSIRIS-REx]]

| next_mission = [[Dragonfly (spacecraft)|''Dragonfly'']]

| next_mission = [[Dragonfly (Titan space probe)|''Dragonfly'']]

}}

}}



'''CAESAR''' ('''Comet Astrobiology Exploration Sample Return''') is a [[sample-return mission]] concept to comet [[67P/Churyumov–Gerasimenko]]. The mission was proposed in 2017 to NASA's [[New Frontiers program]] mission 4, and on 20 December 2017 it was one of two finalists selected for further concept development. On 27 June 2019, the other finalist, the [[Dragonfly (spacecraft)|''Dragonfly'']] mission, was chosen instead.<ref name="nyt20190627">{{cite news|url=https://www.nytimes.com/2019/06/27/science/nasa-titan-dragonfly-caesar.html|title=NASA Announces New Dragonfly Drone Mission to Explore Titan|work=[[The New York Times]]|first=David|last=Brown|date=27 June 2019|access-date=27 June 2019}}</ref>

'''CAESAR''' ('''Comet Astrobiology Exploration Sample Return''') is a [[sample-return mission]] concept to comet [[67P/Churyumov–Gerasimenko]]. The mission was proposed in 2017 to NASA's [[New Frontiers program]] mission 4, and on 20 December 2017 it was one of two finalists selected for further concept development. On 27 June 2019, the other finalist, the [[Dragonfly (Titan space probe)|''Dragonfly'']] mission, was chosen instead.<ref name="nyt20190627">{{cite news|url=https://www.nytimes.com/2019/06/27/science/nasa-titan-dragonfly-caesar.html|title=NASA Announces New Dragonfly Drone Mission to Explore Titan|work=[[The New York Times]]|first=David|last=Brown|date=27 June 2019|access-date=27 June 2019}}</ref>



Had it been selected in June 2019, it would have launched between 2024 and 2025, with a capsule delivering a sample back to Earth in 2038. The Principal Investigator is [[Steve Squyres]] of [[Cornell University]] in Ithaca, New York. ''CAESAR'' would be managed by NASA's [[Goddard Space Flight Center]] in Greenbelt, Maryland. [[Extraterrestrial sample curation|Curation]] of the returned sample would take place at NASA's [[Astromaterials Research and Exploration Science Directorate]], based at [[Johnson Space Center]] in Houston, Texas.

Had it been selected in June 2019, it would have launched between 2024 and 2025, with a capsule delivering a sample back to Earth in 2038. The Principal Investigator is Alexander Hayes of [[Cornell University]] in Ithaca, New York. ''CAESAR'' would be managed by NASA's [[Goddard Space Flight Center]] in Greenbelt, Maryland. [[Extraterrestrial sample curation|Curation]] of the returned sample would take place at NASA's [[Astromaterials Research and Exploration Science Directorate]], based at [[Johnson Space Center]] in Houston, Texas.



The ''CAESAR'' team chose comet 67P over other cometary targets in part because the data collected by the [[Rosetta (spacecraft)|''Rosetta'' mission]], which studied the comet from 2014 to 2016, allows the spacecraft to be designed to the conditions there, increasing the mission's chance of success.<ref name="nyt20171219">{{cite news|url=https://www.nytimes.com/2017/12/19/science/nasa-new-frontiers-finalists.html|title=Finalists in NASA's Spacecraft Sweepstakes: A Drone on Titan, and a Comet-Chaser|work=[[The New York Times]]|first=Kenneth|last=Chang|date=19 December 2017|access-date=8 January 2018}}</ref> The ''Rosetta'' mission also provides a vast geologic context for this mission's sample-return analysis.

The ''CAESAR'' team chose comet 67P over other cometary targets in part because the data collected by the [[Rosetta (spacecraft)|''Rosetta'' mission]], which studied the comet from 2014 to 2016, allows the spacecraft to be designed to the conditions there, increasing the mission's chance of success.<ref name="nyt20171219">{{cite news|url=https://www.nytimes.com/2017/12/19/science/nasa-new-frontiers-finalists.html|title=Finalists in NASA's Spacecraft Sweepstakes: A Drone on Titan, and a Comet-Chaser|work=[[The New York Times]]|first=Kenneth|last=Chang|date=19 December 2017|access-date=8 January 2018}}</ref> The ''Rosetta'' mission also provides a vast geologic context for this mission's sample-return analysis.

Line 43: Line 43:

==Overview==

==Overview==

[[File:Comet 67P on 31 January 2015 - NAVCAM.jpg|thumb|The Comet [[67P/Churyumov–Gerasimenko]] as seen by ''Rosetta'' in 2015; ''CAESAR''{{'s}} proposed target.]]

[[File:Comet 67P on 31 January 2015 - NAVCAM.jpg|thumb|The Comet [[67P/Churyumov–Gerasimenko]] as seen by ''Rosetta'' in 2015; ''CAESAR''{{'s}} proposed target.]]

The two [[New Frontiers program]] Mission 4 finalists, announced on 20 December 2017, were [[Dragonfly (spacecraft)|''Dragonfly'']] to Titan, and ''CAESAR''.<ref name="ibtimes">{{cite news |url=http://www.ibtimes.com/nasas-new-frontier-mission-will-search-alien-life-or-reveal-solar-systems-history-2631073|title=NASA's New Frontier Mission Will Search For Alien Life Or Reveal The Solar System's History|work=International Business Times|first=Elana|last=Glowatz|date=20 December 2017}}</ref> Comet 67P was previously explored by the European Space Agency's [[Rosetta (spacecraft)|''Rosetta'']] probe and its lander [[Philae (spacecraft)|''Philae'']] during 2014-2016 to determine its origin and history. Squyres explained that knowing the existing conditions at the comet allows them to design systems that would dramatically improve the chances for success.<ref name="nyt20171219"/>

The two [[New Frontiers program]] Mission 4 finalists, announced on 20 December 2017, were [[Dragonfly (Titan space probe)|''Dragonfly'']] to Titan, and ''CAESAR''.<ref name="ibtimes">{{cite news |url=http://www.ibtimes.com/nasas-new-frontier-mission-will-search-alien-life-or-reveal-solar-systems-history-2631073|title=NASA's New Frontier Mission Will Search For Alien Life Or Reveal The Solar System's History|work=International Business Times|first=Elana|last=Glowatz|date=20 December 2017}}</ref> Comet 67P was previously explored by the European Space Agency's [[Rosetta (spacecraft)|''Rosetta'']] probe and its lander [[Philae (spacecraft)|''Philae'']] during 2014-2016 to determine its origin and history. Squyres explained that knowing the existing conditions at the comet allows them to design systems that would dramatically improve the chances for success.<ref name="nyt20171219"/>



The ''CAESAR'' and ''Dragonfly'' missions received {{US$|4 million}} funding each through the end of 2018 to further develop and mature their concepts.<ref name="nyt20171219"/> NASA selected the [[Dragonfly (spacecraft)|''Dragonfly'']] mission on 27 June 2019 to build and launch in 2026.<ref name="nyt20190627"/><ref name="ibtimes"/><ref name="nyt20171219"/>

The ''CAESAR'' and ''Dragonfly'' missions received {{US$|4 million}} funding each through the end of 2018 to further develop and mature their concepts.<ref name="nyt20171219"/> NASA selected the [[Dragonfly (Titan space probe)|''Dragonfly'']] mission on 27 June 2019 to build and launch in 2026.<ref name="nyt20190627"/><ref name="ibtimes"/><ref name="nyt20171219"/>



===Background===

===Background===

A comet [[sample-return mission]] was one of the goals in a list of options for a New Frontiers mission in both the 2003 and the 2011 [[Planetary Science Decadal Survey]], which were guiding surveys among those in the scientific community of what and where NASA should prioritize.<ref name="nasa-newfront">{{cite web|url=https://discoverynewfrontiers.nasa.gov/program/index.cfml|title=New Frontiers Program: Overview|publisher=NASA|archive-url=https://web.archive.org/web/20170126051523/https://discoverynewfrontiers.nasa.gov/program/index.cfml|archive-date=26 January 2017}}</ref> Another comet mission proposal, ''[[Comet Hopper]]'', was one of three [[Discovery Program]] finalists that received {{US$|3 million}} in May 2011 to develop a detailed concept study; however, it was not selected.<ref name='Taylor'>{{cite news|url=http://www.tgdaily.com/space-features/55816-nasa-picks-project-shortlist-for-next-discovery-mission|title=NASA picks project shortlist for next Discovery mission|work=Tech Guru Daily|first=Kate |last=Taylor|date=9 May 2011|access-date=28 October 2015}}</ref> NASA has launched several missions to comets in the late 1990s and 2000s; these missions include ''[[Deep Space 1]]'' (launched 1998), [[Stardust (spacecraft)|''Stardust'']] (launched 1999), ''[[CONTOUR]]'' (launched 2002 but failed after launch), and [[Deep Impact (spacecraft)|''Deep Impact'']] (launched 2005), as well as some participation on the [[Rosetta (spacecraft)|''Rosetta'']] mission.

A comet [[sample-return mission]] was one of the goals in a list of options for a New Frontiers mission in both the 2003 and the 2011 [[Planetary Science Decadal Survey]], which were guiding surveys among those in the scientific community of what and where NASA should prioritize.<ref name="nasa-newfront">{{cite web|url=https://discoverynewfrontiers.nasa.gov/program/index.cfml|title=New Frontiers Program: Overview|publisher=NASA|url-status=dead|archive-url=https://web.archive.org/web/20170126051523/https://discoverynewfrontiers.nasa.gov/program/index.cfml|archive-date=26 January 2017}}</ref> Another comet mission proposal, ''[[Comet Hopper]]'', was one of three [[Discovery Program]] finalists that received {{US$|3 million}} in May 2011 to develop a detailed concept study; however, it was not selected.<ref name='Taylor'>{{cite news|url=http://www.tgdaily.com/space-features/55816-nasa-picks-project-shortlist-for-next-discovery-mission|title=NASA picks project shortlist for next Discovery mission|work=Tech Guru Daily|first=Kate|last=Taylor|date=9 May 2011|access-date=28 October 2015|archive-date=6 October 2018|archive-url=https://web.archive.org/web/20181006212756/https://www.tgdaily.com/space-features/55816-nasa-picks-project-shortlist-for-next-discovery-mission|url-status=dead}}</ref> NASA has launched several missions to comets in the late 1990s and 2000s; these missions include ''[[Deep Space 1]]'' (launched 1998), [[Stardust (spacecraft)|''Stardust'']] (launched 1999), ''[[CONTOUR]]'' (launched 2002 but failed after launch), and [[Deep Impact (spacecraft)|''Deep Impact'']] (launched 2005), as well as some participation on the [[Rosetta (spacecraft)|''Rosetta'']] mission.



===Astrobiology===

===Astrobiology===

''CAESAR''{{'s}} objectives were to understand the [[formation and evolution of the Solar System|formation of the Solar System]] and how these components came together to form planets and give [[Abiogenesis|rise to life]].<ref name='Messenger 2018'>{{cite conference|title=The CAESAR New Frontiers Comet Sample Return Mission|conference=Japan Geosciences Union Meeting. 20-24 May 2018. Chiba, Japan. |first=Scott R.|last=Messenger|date=2018|hdl=2060/20180002990|id=JSC-E-DAA-TN54564}}</ref> Some researchers have hypothesized that Earth may have been seeded with [[organic compound]]s early in its development by [[tholin]]-rich comets, providing the raw material necessary for [[abiogenesis|life to emerge]].<ref name='Squyres Nov2018'/><ref name= "sagan1979">{{cite journal|title=Tholins: organic chemistry of interstellar grains and gas|journal=Nature|first1=Carl|last1=Sagan|author1-link=Carl Sagan|first2=Bishun|last2=Khare|author2-link=Bishun Khare|name-list-style=amp|volume=277|issue=5692 |pages=102–107|date=11 January 1979|doi=10.1038/277102a0|bibcode=1979Natur.277..102S}}</ref><ref name="cometary tholins">{{cite journal|title=Production and Chemical Analysis of Cometary Ice Tholins |journal=Icarus |first1=Gene D.|last1=McDonald|first2=Linda J.|last2=Whited|first3=Cynthia|last3=DeRuiter|first4=Bishun N.|last4=Khare|first5=Archita|last5=Patnaik|first6=Carl|last6=Sagan|display-authors=1 |volume=122|issue=1|pages=107–117|date=July 1996|doi=10.1006/icar.1996.0112|bibcode=1996Icar..122..107M}}</ref> Tholins were detected by the [[Rosetta (spacecraft)|''Rosetta'']] mission to comet [[67P/Churyumov–Gerasimenko]].<ref>{{cite journal|title=OSIRIS observations of meter-sized exposures of {{chem2|H2O}} ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments|journal=Astronomy & Astrophysics|first1=A.|last1=Pommerol|first2=N.|last2=Thomas|first3=M. R.|last3=El-Maarry|first4=M.|last4=Pajola|first5=O.|last5=Groussin|display-authors=1|volume=583|at=A25 |date=November 2015 |doi=10.1051/0004-6361/201525977|bibcode=2015A&A...583A..25P|url=https://www.research.unipd.it/bitstream/11577/3182682/1/aa25977-15.pdf|doi-access=free}}</ref><ref>{{cite journal |url=http://science.sciencemag.org/content/349/6247/aab0673.full|title=CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy|journal=Science|first1=I. P.|last1=Wright |first2=S.|last2=Sheridan |first3=S. J.|last3=Barber|first4=G. H.|last4=Morgan|first5=D. J.|last5=Andrews|first6=A. D.|last6=Morse|display-authors=1|volume=349|issue=6247|pages=aab0673|date=31 July 2015 |doi=10.1126/science.aab0673|pmid=26228155|bibcode=2015Sci...349b0673W}}</ref>

''CAESAR''{{'s}} objectives were to understand the [[formation and evolution of the Solar System|formation of the Solar System]] and how these components came together to form planets and give [[Abiogenesis|rise to life]].<ref name='Messenger 2018'>{{cite conference|title=The CAESAR New Frontiers Comet Sample Return Mission|conference=Japan Geosciences Union Meeting. 20–24 May 2018. Chiba, Japan. |first=Scott R.|last=Messenger|date=2018|hdl=2060/20180002990|id=JSC-E-DAA-TN54564}}</ref> Some researchers have hypothesized that Earth may have been seeded with [[organic compound]]s early in its development by [[tholin]]-rich comets, providing the raw material necessary for [[abiogenesis|life to emerge]].<ref name='Squyres Nov2018'/><ref name= "sagan1979">{{cite journal|title=Tholins: organic chemistry of interstellar grains and gas|journal=Nature|first1=Carl|last1=Sagan|author1-link=Carl Sagan|first2=Bishun|last2=Khare|author2-link=Bishun Khare|name-list-style=amp|volume=277|issue=5692 |pages=102–107|date=11 January 1979|doi=10.1038/277102a0|bibcode=1979Natur.277..102S|s2cid=4261076}}</ref><ref name="cometary tholins">{{cite journal|title=Production and Chemical Analysis of Cometary Ice Tholins |journal=Icarus |first1=Gene D.|last1=McDonald|first2=Linda J.|last2=Whited|first3=Cynthia|last3=DeRuiter|first4=Bishun N.|last4=Khare|first5=Archita|last5=Patnaik|first6=Carl|last6=Sagan|display-authors=1 |volume=122|issue=1|pages=107–117|date=July 1996|doi=10.1006/icar.1996.0112|bibcode=1996Icar..122..107M|doi-access=free}}</ref> Tholins were detected by the [[Rosetta (spacecraft)|''Rosetta'']] mission to comet [[67P/Churyumov–Gerasimenko]].<ref>{{cite journal|title=OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments|journal=Astronomy & Astrophysics|first1=A.|last1=Pommerol|first2=N.|last2=Thomas|first3=M. R.|last3=El-Maarry|first4=M.|last4=Pajola|first5=O.|last5=Groussin|display-authors=1|volume=583|at=A25 |date=November 2015 |doi=10.1051/0004-6361/201525977|bibcode=2015A&A...583A..25P|url=https://www.research.unipd.it/bitstream/11577/3182682/1/aa25977-15.pdf|doi-access=free}}</ref><ref>{{cite journal |url=https://www.science.org/doi/10.1126/science.aab0673|title=CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy|journal=Science|first1=I. P.|last1=Wright |first2=S.|last2=Sheridan |first3=S. J.|last3=Barber|first4=G. H.|last4=Morgan|first5=D. J.|last5=Andrews|first6=A. D.|last6=Morse|display-authors=1|volume=349|issue=6247|pages=aab0673|date=31 July 2015 |doi=10.1126/science.aab0673|pmid=26228155|bibcode=2015Sci...349b0673W|s2cid=206637053}}</ref>



==Spacecraft==

==Spacecraft==

The spacecraft would be built by [[Northrop Grumman Innovation Systems]] and it would inherit technology used by the successful [[Dawn (spacecraft)|''Dawn'']] mission.<ref name="EGU 2018">{{cite conference |title=An Overview of the Comet Astrobiology Exploration Sample Return (CAESAR) New Frontiers Mission |conference=20th EGU General Assembly. 4-13 April 2018. Vienna, Austria. |first1=Daniel |last1=Glavin |first2=Steven |last2=Squyres |date=2018 |bibcode=2018EGUGA..20.4823G}}</ref> Navigation, sample site selection, and sample documentation are enabled by the camera suite, provided by [[Malin Space Science Systems]].<ref name='Messenger 2018'/> This camera suite consists of six cameras of varying fields of view and focal ranges: narrow angle camera (NAC), medium angle camera (MAC), touch-and-go camera (TAGCAM), two navigation cameras (NAVCAMs), and a sample container camera (CANCAM).<ref name="Soderblom2018">{{cite conference |title=The CAESAR New Frontiers Mission: Overview and Imaging Objectives |conference=2018 CALCON Technical Meeting. 18-21 June 2018. Logan, Utah. |first1=Jason |last1=Soderblom |first2=Alex |last2=Hayes |first3=Martin |last3=Houghton |first4=Todd |last4=King |first5=Mike |last5=Ravine |first6=Joe |last6=Tansock |first7=Steve |last7=Squyers |display-authors=1 |date=2018}}</ref>

The spacecraft would be built by [[Northrop Grumman Innovation Systems]] and it would inherit technology used by the successful [[Dawn (spacecraft)|''Dawn'']] mission.<ref name="EGU 2018">{{cite conference |title=An Overview of the Comet Astrobiology Exploration Sample Return (CAESAR) New Frontiers Mission |conference=20th EGU General Assembly. 4–13 April 2018. Vienna, Austria. |first1=Daniel |last1=Glavin |first2=Steven |last2=Squyres |date=2018 |bibcode=2018EGUGA..20.4823G}}</ref> Navigation, sample site selection, and sample documentation are enabled by the camera suite, provided by [[Malin Space Science Systems]].<ref name='Messenger 2018'/> This camera suite consists of six cameras of varying fields of view and focal ranges: narrow angle camera (NAC), medium angle camera (MAC), touch-and-go camera (TAGCAM), two navigation cameras (NAVCAMs), and a sample container camera (CANCAM).<ref name="Soderblom2018">{{Cite conference |last=Soderblom |first=Jason |last2=Hayes |first2=Alex |last3=Houghton |first3=Martin |last4=King |first4=Todd |last5=Ravine |first5=Mike |last6=Tansock |first6=Joe |last7=Squyers |first7=Steve |display-authors=1 |date=2018 |title=The CAESAR New Frontiers Mission: Overview and Imaging Objectives |url=https://digitalcommons.usu.edu/calcon/CALCON2018/all2018content/32/ |conference=2018 CALCON Technical Meeting. 18–21 June 2018. Logan, Utah.}}</ref>



The robotic arm (TAG) and the Sample Acquisition System would be provided by [[Honeybee Robotics]].<ref name='Messenger 2018'/> The sample return capsule and heatshield are provided by the Japanese space agency [[JAXA]].<ref name='Squyres Nov2018'/>

The robotic arm (TAG) and the Sample Acquisition System would be provided by [[Honeybee Robotics]].<ref name='Messenger 2018'/> The sample return capsule and heatshield are provided by the Japanese space agency [[JAXA]].<ref name='Squyres Nov2018'/>

Line 60: Line 60:

===Propulsion===

===Propulsion===

[[File:NASA NEXT Ion thruster.712983main NEXT LDT Thrusterhi-res full.jpg|thumb|The NASA's Evolutionary Xenon Thruster (NEXT) operation in a vacuum chamber.]]

[[File:NASA NEXT Ion thruster.712983main NEXT LDT Thrusterhi-res full.jpg|thumb|The NASA's Evolutionary Xenon Thruster (NEXT) operation in a vacuum chamber.]]

The propulsion system on ''CAESAR'' would be [[NEXT (ion thruster)|NASA's Evolutionary Xenon Thruster]] (NEXT),<ref name="SBAG18Squyres"/><ref name='Messenger 2018'/> a type of [[solar electric propulsion]]. It would employ three NEXT thrusters, with one used as a spare.<ref>{{cite conference |title=Electric Propulsion Research and Development at NASA |conference=Spacecraft Propulsion 2018. 14-18 May 2018. Seville, Spain. |first1=George |last1=Schmidt |first2=David |last2=Jacobson |first3=Michael |last3=Patterson |first4=Gani |last4=Ganapathi |first5=John |last5=Brophy |first6=Richard |last6=Hofer |display-authors=1 |date=2018 |hdl=2060/20180004691 |id=SP-2018-00389}}</ref> The propellant is [[xenon]].

The propulsion system on ''CAESAR'' would be [[NEXT (ion thruster)|NASA's Evolutionary Xenon Thruster]] (NEXT),<ref name="SBAG18Squyres"/><ref name='Messenger 2018'/> a type of [[solar electric propulsion]]. It would employ three NEXT thrusters, with one used as a spare.<ref>{{cite conference |title=Electric Propulsion Research and Development at NASA |conference=Spacecraft Propulsion 2018. 14–18 May 2018. Seville, Spain. |first1=George |last1=Schmidt |first2=David |last2=Jacobson |first3=Michael |last3=Patterson |first4=Gani |last4=Ganapathi |first5=John |last5=Brophy |first6=Richard |last6=Hofer |display-authors=1 |date=2018 |hdl=2060/20180004691 |id=SP-2018-00389}}</ref> The propellant is [[xenon]].



==Sample return==

==Sample return==

The spacecraft would not land on the comet, but would momentarily contact the surface with its TAG (Touch-And-Go) robotic arm, as done by ''[[OSIRIS-REx]]'' on an asteroid, including raising the solar arrays into a Y-shaped configuration to minimize the chance of dust accumulation during contact and provide more ground clearance.<ref name="SBAG18Squyres"/> The sampler mechanism on the arm would produce a burst of [[nitrogen]] gas to blow [[regolith]] particles into the sampler head located at the end of the arm. ''CAESAR'' would collect between {{convert|80|and|800|g|abbr=on}} of regolith from the comet. The maximum pebble size would be {{convert|4.5|cm|in|abbr=on}}.<ref name="SBAG18Squyres"/> The system has enough compressed nitrogen gas for three samplings.<ref name='Squyres Nov2018'/>

The spacecraft would not land on the comet, but would momentarily contact the surface with its TAG (Touch-And-Go) robotic arm, as done by ''[[OSIRIS-REx]]'' on an asteroid, including raising the solar arrays into a Y-shaped configuration to minimize the chance of dust accumulation during contact and provide more ground clearance.<ref name="SBAG18Squyres"/> The sampler mechanism on the arm would produce a burst of [[nitrogen]] gas to blow [[regolith]] particles into the sampler head located at the end of the arm. ''CAESAR'' would collect between {{convert|80|and|800|g|abbr=on}} of regolith from the comet. The maximum pebble size would be {{convert|4.5|cm|in|abbr=on}}.<ref name="SBAG18Squyres"/> The system has enough compressed nitrogen gas for three samplings.<ref name='Squyres Nov2018'/>



The system would separate the [[volatiles]] from the solid substances into separate containers and preserve the samples cold for the return trip.<ref name='Squyres Nov2018'/><ref name="curation">{{cite conference |url=https://www.hou.usra.edu/meetings/lpsc2018/pdf/1339.pdf |title=The CAESAR New Frontiers Mission: 5. Contamination, Recovery, and Curation|conference=49th Lunar and Planetary Science Conference. 19-23 March 2018. The Woodlands, Texas. |first1=K. |last1=Nakamura-Messenger |display-authors=etal |date=2018}}</ref> The spacecraft would head back to Earth and drop off the sample in a capsule, which would re-enter Earth's atmosphere and parachute down to the surface in 2038.<ref name="nyt20171219"/> The sample-return capsule (SRC) would be provided by [[JAXA]] and its design is based upon the SRC flown on the ''[[Hayabusa]]'' and ''[[Hayabusa2]]'' spacecraft.<ref name='Messenger 2018'/> The capsule would parachute down at the [[Utah Test and Training Range]] (UTTR), and it would be transported to NASA's [[Johnson Space Center]] for curation and analyses at the laboratory called [[Astromaterials Research and Exploration Science Directorate]] (ARES).<ref name='EGU 2018'/> A small portion of the sample will also be curated at Japan's [[Extraterrestrial Sample Curation Center]].<ref name='Squyres Nov2018'/> Most of the sample (≥75% of the total) would be preserved for analysis by future generations of scientists.<ref name="curation"/><ref name='Squyres Nov2018'/>

The system would separate the [[Volatile (astrogeology)|volatiles]] from the solid substances into separate containers and preserve the samples cold for the return trip.<ref name='Squyres Nov2018'/><ref name="curation">{{cite conference |url=https://www.hou.usra.edu/meetings/lpsc2018/pdf/1339.pdf |title=The CAESAR New Frontiers Mission: 5. Contamination, Recovery, and Curation|conference=49th Lunar and Planetary Science Conference. 19–23 March 2018. The Woodlands, Texas. |first1=K. |last1=Nakamura-Messenger |display-authors=etal |date=2018}}</ref> The spacecraft would head back to Earth and drop off the sample in a capsule, which would re-enter Earth's atmosphere and parachute down to the surface in 2038.<ref name="nyt20171219"/> The sample-return capsule (SRC) would be provided by [[JAXA]] and its design is based upon the SRC flown on the ''[[Hayabusa]]'' and ''[[Hayabusa2]]'' spacecraft.<ref name='Messenger 2018'/> The capsule would parachute down at the [[Utah Test and Training Range]] (UTTR), and it would be transported to NASA's [[Johnson Space Center]] for curation and analyses at the laboratory called [[Astromaterials Research and Exploration Science Directorate]] (ARES).<ref name='EGU 2018'/> A small portion of the sample will also be curated at Japan's [[Extraterrestrial Sample Curation Center]].<ref name='Squyres Nov2018'/> Most of the sample (≥75% of the total) would be preserved for analysis by future generations of scientists.<ref name="curation"/><ref name='Squyres Nov2018'/>



==See also==

==See also==


Latest revision as of 16:07, 23 May 2024

CAESAR
An artist's concept of CAESAR obtaining a sample from comet 67P.
Mission typeSample return
OperatorNASA
Websitecaesar.cornell.edu
Mission duration14 years, 3 months (proposed)
Spacecraft properties
ManufacturerNorthrop Grumman (proposed)[1]
DimensionsSolar panels length: 43.5 m [2]
Start of mission
Launch dateAugust 2024 (proposed)[3]
End of mission
Landing dateNovember 2038 (proposed)[3][4]
Landing siteUtah Test and Training Range[3]
Comet 67P/Churyumov–Gerasimenko orbiter
Orbital insertionJanuary 2029 (proposed)[3]
Orbital departureFebruary 2032 (proposed)[3]
Sample mass80 to 800 g (2.8 to 28.2 oz)
Dragonfly →
 

CAESAR (Comet Astrobiology Exploration Sample Return) is a sample-return mission concept to comet 67P/Churyumov–Gerasimenko. The mission was proposed in 2017 to NASA's New Frontiers program mission 4, and on 20 December 2017 it was one of two finalists selected for further concept development. On 27 June 2019, the other finalist, the Dragonfly mission, was chosen instead.[5]

Had it been selected in June 2019, it would have launched between 2024 and 2025, with a capsule delivering a sample back to Earth in 2038. The Principal Investigator is Alexander Hayes of Cornell University in Ithaca, New York. CAESAR would be managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. Curation of the returned sample would take place at NASA's Astromaterials Research and Exploration Science Directorate, based at Johnson Space Center in Houston, Texas.

The CAESAR team chose comet 67P over other cometary targets in part because the data collected by the Rosetta mission, which studied the comet from 2014 to 2016, allows the spacecraft to be designed to the conditions there, increasing the mission's chance of success.[6] The Rosetta mission also provides a vast geologic context for this mission's sample-return analysis.

Overview[edit]

The Comet 67P/Churyumov–Gerasimenko as seen by Rosetta in 2015; CAESAR's proposed target.

The two New Frontiers program Mission 4 finalists, announced on 20 December 2017, were Dragonfly to Titan, and CAESAR.[7] Comet 67P was previously explored by the European Space Agency's Rosetta probe and its lander Philae during 2014-2016 to determine its origin and history. Squyres explained that knowing the existing conditions at the comet allows them to design systems that would dramatically improve the chances for success.[6]

The CAESAR and Dragonfly missions received US$4 million funding each through the end of 2018 to further develop and mature their concepts.[6] NASA selected the Dragonfly mission on 27 June 2019 to build and launch in 2026.[5][7][6]

Background[edit]

A comet sample-return mission was one of the goals in a list of options for a New Frontiers mission in both the 2003 and the 2011 Planetary Science Decadal Survey, which were guiding surveys among those in the scientific community of what and where NASA should prioritize.[8] Another comet mission proposal, Comet Hopper, was one of three Discovery Program finalists that received US$3 million in May 2011 to develop a detailed concept study; however, it was not selected.[9] NASA has launched several missions to comets in the late 1990s and 2000s; these missions include Deep Space 1 (launched 1998), Stardust (launched 1999), CONTOUR (launched 2002 but failed after launch), and Deep Impact (launched 2005), as well as some participation on the Rosetta mission.

Astrobiology[edit]

CAESAR's objectives were to understand the formation of the Solar System and how these components came together to form planets and give rise to life.[4] Some researchers have hypothesized that Earth may have been seeded with organic compounds early in its development by tholin-rich comets, providing the raw material necessary for life to emerge.[2][10][11] Tholins were detected by the Rosetta mission to comet 67P/Churyumov–Gerasimenko.[12][13]

Spacecraft[edit]

The spacecraft would be built by Northrop Grumman Innovation Systems and it would inherit technology used by the successful Dawn mission.[1] Navigation, sample site selection, and sample documentation are enabled by the camera suite, provided by Malin Space Science Systems.[4] This camera suite consists of six cameras of varying fields of view and focal ranges: narrow angle camera (NAC), medium angle camera (MAC), touch-and-go camera (TAGCAM), two navigation cameras (NAVCAMs), and a sample container camera (CANCAM).[14]

The robotic arm (TAG) and the Sample Acquisition System would be provided by Honeybee Robotics.[4] The sample return capsule and heatshield are provided by the Japanese space agency JAXA.[2]

Propulsion[edit]

The NASA's Evolutionary Xenon Thruster (NEXT) operation in a vacuum chamber.

The propulsion system on CAESAR would be NASA's Evolutionary Xenon Thruster (NEXT),[3][4] a type of solar electric propulsion. It would employ three NEXT thrusters, with one used as a spare.[15] The propellant is xenon.

Sample return[edit]

The spacecraft would not land on the comet, but would momentarily contact the surface with its TAG (Touch-And-Go) robotic arm, as done by OSIRIS-REx on an asteroid, including raising the solar arrays into a Y-shaped configuration to minimize the chance of dust accumulation during contact and provide more ground clearance.[3] The sampler mechanism on the arm would produce a burst of nitrogen gas to blow regolith particles into the sampler head located at the end of the arm. CAESAR would collect between 80 and 800 g (2.8 and 28.2 oz) of regolith from the comet. The maximum pebble size would be 4.5 cm (1.8 in).[3] The system has enough compressed nitrogen gas for three samplings.[2]

The system would separate the volatiles from the solid substances into separate containers and preserve the samples cold for the return trip.[2][16] The spacecraft would head back to Earth and drop off the sample in a capsule, which would re-enter Earth's atmosphere and parachute down to the surface in 2038.[6] The sample-return capsule (SRC) would be provided by JAXA and its design is based upon the SRC flown on the Hayabusa and Hayabusa2 spacecraft.[4] The capsule would parachute down at the Utah Test and Training Range (UTTR), and it would be transported to NASA's Johnson Space Center for curation and analyses at the laboratory called Astromaterials Research and Exploration Science Directorate (ARES).[1] A small portion of the sample will also be curated at Japan's Extraterrestrial Sample Curation Center.[2] Most of the sample (≥75% of the total) would be preserved for analysis by future generations of scientists.[16][2]

See also[edit]

References[edit]

  1. ^ a b c Glavin, Daniel; Squyres, Steven (2018). An Overview of the Comet Astrobiology Exploration Sample Return (CAESAR) New Frontiers Mission. 20th EGU General Assembly. 4–13 April 2018. Vienna, Austria. Bibcode:2018EGUGA..20.4823G.
  • ^ a b c d e f g Squyres, Steven (7 November 2018). "PSW 2399 Comets and the Origin of Life". PSW Science. Retrieved 10 March 2019.
  • ^ a b c d e f g h Squyres, Steve (2018). CAESAR: Project Overview (PDF). 18th Meeting of the NASA Small Bodies Assessment Group. 17–18 January 2018. Ames Research Center, California. Lunar and Planetary Institute.
  • ^ a b c d e f Messenger, Scott R. (2018). The CAESAR New Frontiers Comet Sample Return Mission. Japan Geosciences Union Meeting. 20–24 May 2018. Chiba, Japan. hdl:2060/20180002990. JSC-E-DAA-TN54564.
  • ^ a b Brown, David (27 June 2019). "NASA Announces New Dragonfly Drone Mission to Explore Titan". The New York Times. Retrieved 27 June 2019.
  • ^ a b c d e Chang, Kenneth (19 December 2017). "Finalists in NASA's Spacecraft Sweepstakes: A Drone on Titan, and a Comet-Chaser". The New York Times. Retrieved 8 January 2018.
  • ^ a b Glowatz, Elana (20 December 2017). "NASA's New Frontier Mission Will Search For Alien Life Or Reveal The Solar System's History". International Business Times.
  • ^ "New Frontiers Program: Overview". NASA. Archived from the original on 26 January 2017.
  • ^ Taylor, Kate (9 May 2011). "NASA picks project shortlist for next Discovery mission". Tech Guru Daily. Archived from the original on 6 October 2018. Retrieved 28 October 2015.
  • ^ Sagan, Carl & Khare, Bishun (11 January 1979). "Tholins: organic chemistry of interstellar grains and gas". Nature. 277 (5692): 102–107. Bibcode:1979Natur.277..102S. doi:10.1038/277102a0. S2CID 4261076.
  • ^ McDonald, Gene D.; et al. (July 1996). "Production and Chemical Analysis of Cometary Ice Tholins". Icarus. 122 (1): 107–117. Bibcode:1996Icar..122..107M. doi:10.1006/icar.1996.0112.
  • ^ Pommerol, A.; et al. (November 2015). "OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments" (PDF). Astronomy & Astrophysics. 583. A25. Bibcode:2015A&A...583A..25P. doi:10.1051/0004-6361/201525977.
  • ^ Wright, I. P.; et al. (31 July 2015). "CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy". Science. 349 (6247): aab0673. Bibcode:2015Sci...349b0673W. doi:10.1126/science.aab0673. PMID 26228155. S2CID 206637053.
  • ^ Soderblom, Jason; et al. (2018). The CAESAR New Frontiers Mission: Overview and Imaging Objectives. 2018 CALCON Technical Meeting. 18–21 June 2018. Logan, Utah.
  • ^ Schmidt, George; et al. (2018). Electric Propulsion Research and Development at NASA. Spacecraft Propulsion 2018. 14–18 May 2018. Seville, Spain. hdl:2060/20180004691. SP-2018-00389.
  • ^ a b Nakamura-Messenger, K.; et al. (2018). The CAESAR New Frontiers Mission: 5. Contamination, Recovery, and Curation (PDF). 49th Lunar and Planetary Science Conference. 19–23 March 2018. The Woodlands, Texas.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=CAESAR_(spacecraft)&oldid=1225303549"

    Categories: 
    Missions to comets
    New Frontiers program proposals
    Origin of life
    Proposed NASA space probes
    Proposed astrobiology space missions
    Sample return missions
    Hidden categories: 
    Pages with non-numeric formatnum arguments
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from July 2018
     



    This page was last edited on 23 May 2024, at 16:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki