Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Additional features  



1.1  Parallel programs  





1.2  Channels  





1.3  Scope and variable sharing  





1.4  Extensions to the C language  





1.5  Scheduling  







2 History  





3 References  





4 External links  














Handel-C






Italiano
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by 2.31.33.41 (talk)at00:40, 25 February 2016. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Handel-C
ParadigmImperative (procedural, structured), concurrent
Designed byOxford University Computing Laboratory
DeveloperESL; Celoxica; Agility; Mentor Graphics
First appeared1996
Stable release

v3.0

Typing disciplineStatic, manifest, nominal, inferred
OSCross-platform (multi-platform)
Filename extensions.hcc, .hch
Websitewww.mentor.com/products/fpga/handel-c/
Major implementations
Celoxica DK
Influenced by
C, CSP, occam

Handel-C is a high-level programming language which targets low-level hardware, most commonly used in the programming of FPGAs. It is a rich subset of C, with non-standard extensions to control hardware instantiation with an emphasis on parallelism. Handel-C is to hardware design what the first high-level programming languages were to programming CPUs. Unlike many other design languages that target a specific architecture Handel-C can be compiled to a number of design languages and then synthesised to the corresponding hardware. This frees developers to concentrate on the programming task at hand rather than the idiosyncrasies of a specific design language and architecture.

Additional features

The subset of C includes all common C language features necessary to describe complex algorithms. Like many embedded C compilers, floating point data types were omitted. Floating point arithmetic is supported through external libraries that are very efficient.

Parallel programs

In order to facilitate a way to describe parallel behaviour some of the CSP keywords are used, along with the general file structure of Occam.

For example:[1]

par {    
     ++c;
     a = d + e;
     b = d + e;
}

Channels

Channels provide a mechanism for message passing between parallel threads. Channels can be defined as asynchronous or synchronous (with or without an inferred storage element respectively). A thread writing to a synchronous channel will be immediately blocked until the corresponding listening thread is ready to receive the message. Likewise the receiving thread will block on a read statement until the sending thread executes the next send. Thus they may be used as a means of synchronizing threads.[1]

par {
    chan int a; // declare a synchronous channel
    int x;

    // begin sending thread
    seq (i = 0; i < 10; i++) {
        a ! i;  // send the values 0 to 9 sequentially into the channel
    }

    // begin receiving thread
    seq (j = 0; j < 10; j++) {
        a ? x;  // perform a sequence of 10 reads from the channel into variable x
        delay;  // introduce a delay of 1 clock cycle between successive reads
                // this has the effect of blocking the sending thread between writes
    }
}

Asynchronous channels provide a specified amount of storage for data passing through them in the form of a FIFO. Whilst this FIFO neither full nor empty, both sending and receiving threads may proceed without being blocked. However, when the FIFO is empty, the receiving thread will block at the next read. When it is full, the sending thread will block at the next send. A channel with actors in differing clock domains is automatically asynchronous due to the need for at least one element of storage to mitigate metastability.

A thread may simultaneously wait on multiple channels, synchronous or asynchronous, acting upon the first one available given a specified order of priority or optionally executing an alternate path if none is ready.

Scope and variable sharing

The scope of declarations are limited to the code blocks ({ ... }) in which they were declared, the scope is hierarchical in nature as declarations are in scope within sub blocks.[1]

For example:

int a;

void main(void)
{
   int b;
   /* "a" and "b" are within scope */
   {
     int c;
     /* "a", "b" and "c" are within scope */ 
   }
   {
     int d;
     /* "a", "b" and "d" are within scope */  
   }
}

Extensions to the C language

In addition to the effects the standard semantics of C have on the timing of the program, the following keywords[1] are reserved for describing the practicalities of the FPGA environment or for the language elements sourced from Occam:

Types and Objects Expressions Statements
chan < ... > (type clarifier) ! (send into channel)
chanin [ : ] (bit range selection) ? (read from channel)
chanout \\ (drop) delay
macro expr <- (take) ifselect
external @ (concatenation operator) set intwidth
external_divide select let ... ; in
inline width par
interface prialt
internal releasesema
internal_divide set clock
mpram set family
macro proc set part
ram set reset
rom seq
sema try { ... } reset
shared trysema
signal with
typeof
undefined
wom

Scheduling

In Handel-C, assignment and the delay command take one cycle. All other operations are "free".[1] This allows programmers to manually schedule tasks and create effective pipelines. By arranging loops in parallel with the correct delays, pipelines can massively increase data throughput, at the expense of increased hardware resource use.

History

The historical roots of Handel-C are in a series of Oxford University Computing Laboratory hardware description languages developed by the hardware compilation group. Handel HDL evolved into Handel-C around early 1996. The technology developed at Oxford was spun off to mature as a cornerstone product for Embedded Solutions Limited (ESL) in 1996. ESL was renamed Celoxica in September 2000.

Handel-C was adopted by many University Hardware Research groups after its release by ESL, as a result was able to establish itself as a hardware design tool of choice within the academic community, especially in the United Kingdom.

In early 2008, Celoxica's ESL business was acquired by Agility, which developed and sold, among other products, ESL tools supporting Handel-C.

In early 2009, Agility ceased operations after failing to obtain further capital investments or credit[2]

In January 2009, Mentor Graphics acquired Agility's C synthesis assets.[3]

Other subset C HDL's that developed around the same time are Transmogrifier C in 1994 at University of Toronto (now the FpgaC open source project) and Streams-C at Los Alamos National Laboratory (now licensed to Impulse Accelerated Technologies under the name Impulse C)

References

  • ^ Gabe Moretti (Published 01/19/2009). "Agility DS victim of credit crunch". EETimes.com. {{cite web}}: Check date values in: |date= (help)
  • ^ Dylan McGrath (Published 01/22/2009). "Mentor buys Agility's C synthesis assets". EETimes.com. {{cite web}}: Check date values in: |date= (help)
  • External links



    Retrieved from "https://en.wikipedia.org/w/index.php?title=Handel-C&oldid=706737097"

    Categories: 
    C programming language family
    Hardware description languages
    Hidden categories: 
    Pages using deprecated source tags
    CS1 errors: dates
     



    This page was last edited on 25 February 2016, at 00:40 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki