Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Etymology  





2 Structure  





3 Development  





4 Functions  



4.1  Components  





4.2  Circulation  







5 Clinical significance  





6 As a growth medium  





7 References  





8 External links  














Lymph: Difference between revisions






Afrikaans
العربية
Azərbaycanca

Беларуская
Беларуская (тарашкевіца)
Български
Bosanski
Català
Чӑвашла
Čeština
Chavacano de Zamboanga
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge
Galego

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Interlingua
IsiZulu
Italiano

Қазақша
Kurdî
Кыргызча
Latina
Lietuvių
Македонски


Bahasa Melayu
Nederlands

ߒߞߏ
Norsk bokmål
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Shqip

Slovenčina
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog

Türkçe
Українська
Tiếng Vit
Winaray



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
m Undid revision 1063537730 by 117.195.95.34 (talk) non-constructive
updated meaning water to pure water.
Tags: Reverted Visual edit Mobile edit Mobile web edit
Line 11: Line 11:

}}

}}



'''Lymph''' (from Latin, {{lang|la|lympha}}, meaning "water")<ref>{{cite web |url=http://www.merriam-webster.com/dictionary/lymph |title=Lymph – Definition and More from the Free Merriam-Webster Dictionary |publisher=www.merriam-webster.com |access-date=29 May 2010 }}</ref> is the fluid that flows through the [[lymphatic system]], a system composed of [[lymph vessel]]s (channels) and intervening [[lymph node]]s whose function, like the [[venous system]], is to return fluid from the tissues to be recirculated. At the origin of the fluid-return process, [[interstitial fluid]]—the fluid between the cells in all [[body tissue]]s<ref>[http://www.anaesthesiamcq.com/FluidBook/fl2_1.php Fluid Physiology: 2.1 Fluid Compartments]</ref>—enters the [[lymph capillary|lymph capillaries]]. This lymphatic fluid is then transported via progressively larger [[lymphatic vessel]]s through [[lymph node]]s, where substances are removed by tissue [[lymphocyte]]s and circulating lymphocytes are added to the fluid, before emptying ultimately into the right or the left [[subclavian vein]], where it mixes with central [[venous blood]].

'''Lymph''' (from Latin, {{lang|la|lympha}}, meaning "pure water")<ref>{{cite web |url=http://www.merriam-webster.com/dictionary/lymph |title=Lymph – Definition and More from the Free Merriam-Webster Dictionary |publisher=www.merriam-webster.com |access-date=29 May 2010 }}</ref> is the fluid that flows through the [[lymphatic system]], a system composed of [[lymph vessel]]s (channels) and intervening [[lymph node]]s whose function, like the [[venous system]], is to return fluid from the tissues to be recirculated. At the origin of the fluid-return process, [[interstitial fluid]]—the fluid between the cells in all [[body tissue]]s<ref>[http://www.anaesthesiamcq.com/FluidBook/fl2_1.php Fluid Physiology: 2.1 Fluid Compartments]</ref>—enters the [[lymph capillary|lymph capillaries]]. This lymphatic fluid is then transported via progressively larger [[lymphatic vessel]]s through [[lymph node]]s, where substances are removed by tissue [[lymphocyte]]s and circulating lymphocytes are added to the fluid, before emptying ultimately into the right or the left [[subclavian vein]], where it mixes with central [[venous blood]].



Because it is derived from interstitial fluid, with which blood and surrounding cells continually exchange substances, lymph undergoes continual change in composition. It is generally similar to [[blood plasma]], which is the fluid component of blood. Lymph returns [[protein]]s and excess interstitial fluid to the [[bloodstream]]. Lymph also transports fats from the [[digestive system]] (beginning in the [[lacteal]]s) to the blood via [[chylomicron]]s.

Because it is derived from interstitial fluid, with which blood and surrounding cells continually exchange substances, lymph undergoes continual change in composition. It is generally similar to [[blood plasma]], which is the fluid component of blood. Lymph returns [[protein]]s and excess interstitial fluid to the [[bloodstream]]. Lymph also transports fats from the [[digestive system]] (beginning in the [[lacteal]]s) to the blood via [[chylomicron]]s.


Revision as of 08:45, 2 January 2023

Lymph
Diagram showing the formation of lymph from interstitial fluid (labeled here as "Tissue fluid"). Note how the tissue fluid is entering the blind ends of lymph capillaries (shown as deep green arrows)
Details
SystemLymphatic system
SourceFormed from interstitial fluid
Identifiers
LatinLympha
MeSHD008196
TA98A12.0.00.043
TA23893
FMA9671
Anatomical terminology

[edit on Wikidata]

Lymph (from Latin, lympha, meaning "pure water")[1] is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to be recirculated. At the origin of the fluid-return process, interstitial fluid—the fluid between the cells in all body tissues[2]—enters the lymph capillaries. This lymphatic fluid is then transported via progressively larger lymphatic vessels through lymph nodes, where substances are removed by tissue lymphocytes and circulating lymphocytes are added to the fluid, before emptying ultimately into the right or the left subclavian vein, where it mixes with central venous blood.

Because it is derived from interstitial fluid, with which blood and surrounding cells continually exchange substances, lymph undergoes continual change in composition. It is generally similar to blood plasma, which is the fluid component of blood. Lymph returns proteins and excess interstitial fluid to the bloodstream. Lymph also transports fats from the digestive system (beginning in the lacteals) to the blood via chylomicrons.

Bacteria may enter the lymph channels and be transported to lymph nodes, where the bacteria are destroyed. Metastatic cancer cells can also be transported via lymph.

Etymology

The word lymph is derived from the name of the ancient Roman deity of fresh water, Lympha.

Structure

Human lymph, obtained after a thoracic duct injury

Lymph has a composition similar but not identical to that of blood plasma. Lymph that leaves a lymph node is richer in lymphocytes than blood plasma is. The lymph formed in the human digestive system called chyle is rich in triglycerides (fat), and looks milky white because of its lipid content.

Development

Formation of interstitial fluid from blood. Starling forces are labelled: the hydrostatic pressure is higher proximally, driving fluid out; oncotic forces are higher distally, pulling fluid in.

Blood supplies nutrients and important metabolites to the cells of a tissue and collects back the waste products they produce, which requires exchange of respective constituents between the blood and tissue cells. This exchange is not direct, but instead occurs through an intermediary called interstitial fluid, which occupies the spaces between cells. As the blood and the surrounding cells continually add and remove substances from the interstitial fluid, its composition continually changes. Water and solutes can pass between the interstitial fluid and blood via diffusion across gaps in capillary walls called intercellular clefts; thus, the blood and interstitial fluid are in dynamic equilibrium with each other.[3]

Interstitial fluid forms at the arterial (coming from the heart) end of capillaries because of the higher pressure of blood compared to veins, and most of it returns to its venous ends and venules; the rest (up to 10%) enters the lymph capillaries as lymph.[4] Thus, lymph when formed is a watery clear liquid with the same composition as the interstitial fluid. However, as it flows through the lymph nodes it comes in contact with blood, and tends to accumulate more cells (particularly, lymphocytes) and proteins.[5]

Functions

Components

Lymph returns proteins and excess interstitial fluid to the bloodstream. Lymph may pick up bacteria and transport them to lymph nodes, where the bacteria are destroyed. Metastatic cancer cells can also be transported via lymph. Lymph also transports fats from the digestive system (beginning in the lacteals) to the blood via chylomicrons.

Circulation

Tubular vessels transport lymph back to the blood, ultimately replacing the volume lost during the formation of the interstitial fluid. These channels are the lymphatic channels, or simply lymphatics.[6]

Unlike the cardiovascular system, the lymphatic system is not closed. In some amphibian and reptilian species, the lymphatic system has central pumps, called lymph hearts, which typically exist in pairs,[7] but humans and other mammals do not have a central lymph pump. Lymph transport is slow and sporadic.[7] Despite low pressure, lymph movement occurs due to peristalsis (propulsion of the lymph due to alternate contraction and relaxation of smooth muscle tissue), valves, and compression during contraction of adjacent skeletal muscle and arterial pulsation.[8]

Lymph that enters the lymph vessels from the interstitial spaces usually does not flow backwards along the vessels because of the presence of valves. If excessive hydrostatic pressure develops within the lymph vessels, though, some fluid can leak back into the interstitial spaces and contribute to formation of edema.

The flow of lymph in the thoracic duct in an average resting person usually approximates 100ml per hour. Accompanied by another ~25ml per hour in other lymph vessels, the total lymph flow in the body is about 4 to 5 litres per day. This can be elevated several fold while exercising. It is estimated that without lymphatic flow, the average resting person would die within 24 hours.[9]

Clinical significance

Histopathological examination of the lymph system is used as a screening tool for immune system analysis in conjunction with pathological changes in other organ systems and clinical pathology to assess disease status.[10] Although histological assessment of the lymph system does not directly measure immune function, it can be combined with identification of chemical biomarkers to determine underlying changes in the diseased immune system.[11]

As a growth medium

In 1907 the zoologist Ross Granville Harrison demonstrated the growth of frog nerve cell processes in a medium of clotted lymph. It is made up of lymph nodes and vessels.

In 1913, E. Steinhardt, C. Israeli, and R. A. Lambert grew vaccinia virus in fragments of tissue culture from guinea pig cornea grown in lymph.[12]

References

  1. ^ "Lymph – Definition and More from the Free Merriam-Webster Dictionary". www.merriam-webster.com. Retrieved 29 May 2010.
  • ^ Fluid Physiology: 2.1 Fluid Compartments
  • ^ "The Lymphatic System". Human Anatomy (Gray's Anatomy). Retrieved 12 October 2012.
  • ^ Warwick, Roger; Peter L. Williams (1973) [1858]. "Angiology (Chapter 6)". Gray's anatomy. illustrated by Richard E. M. Moore (Thirty-fifth ed.). London: Longman. pp. 588–785.
  • ^ Sloop, Charles H.; Ladislav Dory; Paul S. Roheim (March 1987). "Interstitial fluid lipoproteins" (PDF). Journal of Lipid Research. 28 (3): 225–237. doi:10.1016/S0022-2275(20)38701-0. PMID 3553402. Retrieved 7 July 2008.
  • ^ "Definition of lymphatics". Webster's New World Medical Dictionary. MedicineNet.com. Retrieved 6 July 2008.
  • ^ a b Hedrick, Michael S.; Hillman, Stanley S.; Drewes, Robert C.; Withers, Philip C. (1 July 2013). "Lymphatic regulation in nonmammalian vertebrates". Journal of Applied Physiology. 115 (3): 297–308. doi:10.1152/japplphysiol.00201.2013. ISSN 8750-7587. PMID 23640588.
  • ^ Shayan, Ramin; Achen, Marc G.; Stacker, Steven A. (2006). "Lymphatic vessels in cancer metastasis: bridging the gaps". Carcinogenesis. 27 (9): 1729–38. doi:10.1093/carcin/bgl031. PMID 16597644.
  • ^ Guyton and Hall Textbook of Medical Physiology. Saunders. 2010. pp. 186, 187. ISBN 978-1416045748.
  • ^ Elmore, Susan A. (16 November 2011). "Enhanced histopathology of the immune system". Toxicologic Pathology. 40 (2): 148–156. doi:10.1177/0192623311427571. ISSN 0192-6233. PMC 3465566. PMID 22089843.
  • ^ Elmore, Susan A. (2018). "Enhanced Histopathology Evaluation of Lymphoid Organs". Immunotoxicity Testing. Methods in Molecular Biology. Vol. 1803. pp. 147–168. doi:10.1007/978-1-4939-8549-4_10. ISBN 978-1-4939-8548-7. ISSN 1064-3745. PMID 29882138.
  • ^ Steinhardt, E; Israeli, C; and Lambert, R.A. (1913) "Studies on the cultivation of the virus of vaccinia" J. Inf Dis. 13, 294–300
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lymph&oldid=1131050164"

    Categories: 
    Body fluids
    Lymphatic system
    Lymph fluid
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from May 2021
    Articles containing Latin-language text
    Articles to be expanded from March 2018
    All articles to be expanded
    Articles using small message boxes
    Inconsistent wikidata for Commons category
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with TA98 identifiers
     



    This page was last edited on 2 January 2023, at 08:45 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki