Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Timing and duration  





2 Prediction and visibility  





3 See also  





4 References  














Orbital pass






فارسی

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Swpb (talk | contribs)at18:05, 15 January 2019 (Undid revision 878580918 by Fgnievinski (talk) The bound clause "in spaceflight and satellite communications" is not long or complex enough to justify overriding MOS:BOLDTITLE's guidance to place the title as early as possible). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Visible pass of the International Space Station and Space Shuttle Atlantis over Tampa, Florida, on mission STS-132, May 18, 2010 (five-minute exposure)

Apass, in spaceflight and satellite communications, is the period in which a satellite or other spacecraft is above the local horizon and available for radio communication with a particular ground station, satellite receiver, or relay satellite (or, in some cases, for visual sighting). The beginning of a pass is termed acquisition of signal; the end of a pass is termed loss of signal.[1] The point at which a spacecraft comes closest to a ground observer is the time of closest approach.[1]

Timing and duration

The timing and duration of passes depends on the characteristics of the orbit a satellite occupies, as well as the ground topography and any occulting objects on the ground (such as buildings), or in space (for planetary probes, or for spacecraft using relay satellites).[2] An observer directly on the ground track of the satellite will experience the greatest ground pass duration.[3] Path loss is greatest toward the start and end of a ground pass,[4] as is Doppler shifting for Earth-orbiting satellites.[5]

Satellites in geosynchronous orbit may be continuously visible from a single ground station, whereas satellites in low Earth orbit only offer short-duration ground passes[3] (although longer contacts may be made via relay satellite networks such as TDRSS). Satellite constellations, such as those of satellite navigation systems, may be designed so that a minimum subset of the constellation is always visible from any point on the Earth, thereby providing continuous coverage.[2]

Prediction and visibility

A number of web-based and mobile applications produce predictions of passes for known satellites.[6] In order to be observed with the naked eye, a spacecraft must reflect sunlight towards the observer; thus, naked-eye observations are generally restricted to twilight hours, during which the spacecraft is in sunlight but the observer is not. A satellite flare occurs when sunlight is reflected by flat surfaces on the spacecraft. The International Space Station, the largest artificial satellite of Earth, has a maximum apparent magnitude of –5.9,[7] brighter than the planet Venus.[8]

See also

References

  1. ^ a b "AOS, TCA, and LOS". Northern Lights Software Associates. Retrieved 17 November 2015.
  • ^ a b Wood, Lloyd (July 2006). Introduction to satellite constellations: Orbital types, uses and related facts (PDF). ISU Summer Session. Retrieved 17 November 2015.
  • ^ a b Del Re, Encrico; Pierucci, Laura (eds.). Satellite Personal Communications for Future-generation Systems. Springer. p. 19. ISBN 1447101316. Retrieved 17 November 2015.
  • ^ Richharia, Madhavendra (2014). Mobile Satellite Communications: Principles and Trends (Second ed.). Wiley. pp. 106–107. ISBN 1118810066. Retrieved 17 November 2015.
  • ^ Montenbruck, Oliver; Eberhard, Gill (2012). Satellite Orbits: Models, Methods, and Applications. Springer. p. 229. ISBN 3642583512. Retrieved 17 November 2015.
  • ^ Dickinson, David (July 11, 2013). "How to Spot and Track Satellites". Universe Today. Retrieved 17 November 2015.
  • ^ "ISS Information - Heavens-above.com". Heavens-above. Retrieved 2007-12-22.
  • ^ "HORIZONS Web Interface". Solar System Dynamics. Jet Propulsion Laboratory. Retrieved 13 July 2016.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Orbital_pass&oldid=878582411"

    Categories: 
    Astrodynamics
    Spacecraft communication
    Hidden categories: 
    Articles with short description
    Pages with lower-case short description
    Short description is different from Wikidata
     



    This page was last edited on 15 January 2019, at 18:05 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki