Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Applications  



2.1  Weather  





2.2  Environmental monitoring  





2.3  Mapping  







3 International regulations  



3.1  Classification  





3.2  Frequency allocation  







4 See also  





5 References  





6 External links  














Earth observation satellite






العربية
Български
Bosanski
Català
Deutsch
Español
فارسی
Français
Galego

Hrvatski
Bahasa Indonesia
Italiano
עברית
Lëtzebuergesch
Limburgs
Bahasa Melayu
Nederlands

Norsk bokmål
پښتو
Polski
Português
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி


Türkçe
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Six Earth observation satellites comprising the A-train satellite constellation as of 2014.

AnEarth observation satelliteorEarth remote sensing satellite is a satellite used or designed for Earth observation (EO) from orbit, including spy satellites and similar ones intended for non-military uses such as environmental monitoring, meteorology, cartography and others. The most common type are Earth imaging satellites, that take satellite images, analogous to aerial photographs; some EO satellites may perform remote sensing without forming pictures, such as in GNSS radio occultation.

The first occurrence of satellite remote sensing can be dated to the launch of the first artificial satellite, Sputnik 1, by the Soviet Union on October 4, 1957.[1] Sputnik 1 sent back radio signals, which scientists used to study the ionosphere.[2] The United States Army Ballistic Missile Agency launched the first American satellite, Explorer 1, for NASA's Jet Propulsion Laboratory on January 31, 1958. The information sent back from its radiation detector led to the discovery of the Earth's Van Allen radiation belts.[3] The TIROS-1 spacecraft, launched on April 1, 1960, as part of NASA's Television Infrared Observation Satellite (TIROS) program, sent back the first television footage of weather patterns to be taken from space.[1]

In 2008, more than 150 Earth observation satellites were in orbit, recording data with both passive and active sensors and acquiring more than 10 terabits of data daily.[1] By 2021, that total had grown to over 950, with the largest number of satellites operated by US-based company Planet Labs.[4]

Most Earth observation satellites carry instruments that should be operated at a relatively low altitude. Most orbit at altitudes above 500 to 600 kilometers (310 to 370 mi). Lower orbits have significant air-drag, which makes frequent orbit reboost maneuvers necessary. The Earth observation satellites ERS-1, ERS-2 and EnvisatofEuropean Space Agency as well as the MetOp spacecraft of EUMETSAT are all operated at altitudes of about 800 km (500 mi). The Proba-1, Proba-2 and SMOS spacecraft of European Space Agency are observing the Earth from an altitude of about 700 km (430 mi). The Earth observation satellites of UAE, DubaiSat-1 & DubaiSat-2 are also placed in Low Earth Orbits (LEO) orbits and providing satellite imagery of various parts of the Earth.[5][6]

To get global coverage with a low orbit, a polar orbit is used. A low orbit will have an orbital period of roughly 100 minutes and the Earth will rotate around its polar axis about 25° between successive orbits. The ground track moves towards the west 25° each orbit, allowing a different section of the globe to be scanned with each orbit. Most are in Sun-synchronous orbits.

Ageostationary orbit, at 36,000 km (22,000 mi), allows a satellite to hover over a constant spot on the earth since the orbital period at this altitude is 24 hours. This allows uninterrupted coverage of more than 1/3 of the Earth per satellite, so three satellites, spaced 120° apart, can cover the whole Earth. This type of orbit is mainly used for meteorological satellites.

History[edit]

Herman Potočnik explored the idea of using orbiting spacecraft for detailed peaceful and military observation of the ground in his 1928 book, The Problem of Space Travel. He described how the special conditions of space could be useful for scientific experiments. The book described geostationary satellites (first put forward by Konstantin Tsiolkovsky) and discussed communication between them and the ground using radio, but fell short of the idea of using satellites for mass broadcasting and as telecommunications relays.[7]

Applications[edit]

Weather[edit]

GOES-8, a United States weather satellite.

A weather satellite is a type of satellite that is primarily used to monitor the weather and climate of the Earth.[8] These meteorological satellites, however, see more than clouds and cloud systems. City lights, fires, effects of pollution, auroras, sand and dust storms, snow cover, ice mapping, boundaries of ocean currents, energy flows, etc., are other types of environmental information collected using weather satellites.

Weather satellite images helped in monitoring the volcanic ash cloud from Mount St. Helens and activity from other volcanoes such as Mount Etna.[9] Smoke from fires in the western United States such as Colorado and Utah have also been monitored.

Environmental monitoring[edit]

Composite satellite image of the Earth, showing its entire surface in equirectangular projection

Other environmental satellites can assist environmental monitoring by detecting changes in the Earth's vegetation, atmospheric trace gas content, sea state, ocean color, and ice fields. By monitoring vegetation changes over time, droughts can be monitored by comparing the current vegetation state to its long term average.[10] For example, the 2002 oil spill off the northwest coast of Spain was watched carefully by the European ENVISAT, which, though not a weather satellite, flies an instrument (ASAR) which can see changes in the sea surface. Anthropogenic emissions can be monitored by evaluating data of tropospheric NO2 and SO2.[citation needed]

These types of satellites are almost always in Sun-synchronous and "frozen" orbits. A Sun-synchronous orbit passes over each spot on the ground at the same time of day, so that observations from each pass can be more easily compared, since the Sun is in the same spot in each observation. A "frozen" orbit is the closest possible orbit to a circular orbit that is undisturbed by the oblateness of the Earth, gravitational attraction from the Sun and Moon, solar radiation pressure, and air drag.[citation needed]

Mapping[edit]

Terrain can be mapped from space with the use of satellites, such as Radarsat-1[11] and TerraSAR-X.

International regulations[edit]

RapidEye Earth exploration-satellite system in action around the Earth.

According to the International Telecommunication Union (ITU), Earth exploration-satellite service (also: Earth exploration-satellite radiocommunication service) is – according to Article 1.51 of the ITU Radio Regulations (RR)[12] – defined as:

Aradiocommunication service between earth stations and one or more space stations, which may include links between space stations, in which:

  • information relating to the characteristics of the Earth and its natural phenomena, including data relating to the state of the environment, is obtained from passive or active sensorsonsatellites;
  • similar information is collected from airborne or Earth-based platforms;
  • such information may be distributed to earth stations within the system concerned;
  • platform interrogation may be included.

This service may also include feeder links necessary for its operation.

Classification[edit]

This radiocommunication service is classified in accordance with ITU Radio Regulations (article 1) as follows:[citation needed]
Fixed service (article 1.20)

Frequency allocation[edit]

The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012).[13]

In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which is with-in the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared.

However, military usage, in bands where there is civil usage, will be in accordance with the ITU Radio Regulations.

Example of frequency allocation
Allocation to services
Region 1 Region 2 Region 3
401-402 MHz       METEOROLOGICAL AIDS
SPACE OPERATION (space-to-Earth)
EARTH EXPLORATION-SATELLITE (Earth-to-space)
METEOROLOGICAL-SATELLITE (Earth-to-space)
Fixed
Mobile except aeronautical mobile
13.4-13.75 GHz   EARTH EXPLORATION-SATELLITE (active)
RADIOLOCATION
SPACE RESEARCH
Standard frequency and time signal-satellite (Earth-to-space)

See also[edit]

References[edit]

  1. ^ a b c Tatem, Andrew J.; Goetz, Scott J.; Hay, Simon I. (2008). "Fifty Years of Earth-observation Satellites". American Scientist. 96 (5): 390–398. doi:10.1511/2008.74.390. PMC 2690060. PMID 19498953.
  • ^ Kuznetsov, V.D.; Sinelnikov, V.M.; Alpert, S.N. (June 2015). "Yakov Alpert: Sputnik-1 and the first satellite ionospheric experiment". Advances in Space Research. 55 (12): 2833–2839. Bibcode:2015AdSpR..55.2833K. doi:10.1016/j.asr.2015.02.033.
  • ^ "James A. Van Allen". nmspacemuseum.org. New Mexico Museum of Space History. Retrieved 14 May 2018.
  • ^ "How many Earth observation satellites are orbiting the planet in 2021?". 18 August 2021.
  • ^ "DubaiSat-2, Earth Observation Satellite of UAE". Mohammed Bin Rashid Space Centre. Archived from the original on 2019-01-17. Retrieved 2016-07-04.
  • ^ "DubaiSat-1, Earth Observation Satellite of UAE". Mohammed Bin Rashid Space Centre. Archived from the original on 2016-03-04. Retrieved 2016-07-04.
  • ^ "Introduction to satellite". www.sasmac.cn. 2 September 2016. Archived from the original on 16 September 2016. Retrieved 19 April 2017.
  • ^ NESDIS, Satellites. Archived 2008-07-04 at the Wayback Machine Retrieved on 4 July 2008 Public Domain This article incorporates text from this source, which is in the public domain.
  • ^ NOAA, NOAA Satellites, Scientists Monitor Mt. St. Helens for Possible Eruption. Archived 2012-09-10 at archive.today Retrieved on 4 July 2008 Public Domain This article incorporates text from this source, which is in the public domain.
  • ^ NASA, Drought. Archived 19 August 2008 at the Wayback Machine Retrieved on 4 July 2008 Public Domain This article incorporates text from this source, which is in the public domain.
  • ^ Grunsky, E.C. The use of multi-beam Radarsat-1 satellite imagery for terrain mapping. Retrieved on 4 July 2008
  • ^ ITU Radio Regulations, Section IV. Radio Stations and Systems – Article 1.51, definition: earth exploration-satellite service / earth exploration-satellite radiocommunication service
  • ^ ITU Radio Regulations, CHAPTER II – Frequencies, ARTICLE 5 Frequency allocations, Section IV – Table of Frequency Allocations
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Earth_observation_satellite&oldid=1216683381"

    Categories: 
    Earth observation satellites
    Satellites by type
    Satellite imagery
    Hidden categories: 
    Webarchive template wayback links
    Source attribution
    Webarchive template archiveis links
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2024
    Articles with GND identifiers
     



    This page was last edited on 1 April 2024, at 12:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki