Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Reports  





2 Theory  





3 Exciton Coupling  





4 References  





5 External links  














Room-temperature superconductor: Difference between revisions






العربية
Español

Bahasa Indonesia



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
Possible reduction to practice plus literature references for strategy and synthesis.
Line 41: Line 41:


==Exciton Coupling==

==Exciton Coupling==

William A. Little<ref>Phys. Rev. 134 A1416-A1424 (1964), [http://prola.aps.org/abstract/PR/v134/i6A/pA1416_1 Possibility of Synthesizing an Organic Superconductor]</ref> proposed high temperature exciton-coupled superconductors, (—C(Ar)=(Ar)C—)<sub>n</sub> or (=(Ar)C—C(Ar)=)<sub>n</sub> where "Ar" is a polarizable chromphore (dye). 1964 synthesis was absurd, 21st century synthesis is possible. Somebody should look.

William A. Little<ref>Phys. Rev. 134 A1416-A1424 (1964), [http://prola.aps.org/abstract/PR/v134/i6A/pA1416_1 Possibility of Synthesizing an Organic Superconductor]</ref> proposed high temperature exciton-coupled superconductors, (—C(Ar)=(Ar)C—)<sub>n</sub> or (=(Ar)C—C(Ar)=)<sub>n</sub> where "Ar" is a polarizable chromphore (dye).



Replace Bardeen-Cooper-Shrieffer large mass [[phonon]]s (quantized lattice vibrations re [[Debye temperature]]) with small mass [[exciton]]s (quantized bound states of electrons and holes), energies around 2 eV or 23,000° K. Exciton-mediated electron pairing offers very high critical temperatures even given weak coupling.

Replace Bardeen-Cooper-Shrieffer large mass [[phonon]]s (quantized lattice vibrations re [[Debye temperature]]) with small mass [[exciton]]s (quantized bound states of electrons and holes), energies around 2 eV or 23,000° K. Exciton-mediated electron pairing offers very high critical temperatures even given weak coupling.


Revision as of 21:48, 25 June 2012

Aroom-temperature superconductor is a hypothetical material which would be capable of exhibiting superconducting properties at operating temperatures above 0° C (273.15 K). While this is not strictly "room temperature" (which would be approx. 20–25 °C), it is the temperature at which ice forms and can be reached and maintained extremely easily in an everyday environment.

It is unknown whether any such material exists. The interest in its discovery arises from the repeated discovery of superconductivity at temperatures previously unexpected or held to be impossible. The potential benefits for society and science if such a material did exist are profound.

Reports

Since the discovery of high-temperature superconductors, several materials have been reported to be room-temperature superconductors.

In 2008 a Canadian-German team reported the discovery of superconductivity when silane (SiH4) was compressed to a solid at high pressure.[1][2] Silane was unfortunately not a room-temperature superconductor; an EE Times article grossly exaggerated this achievement and claimed that room-temperature superconductivity had been achieved. In reality, the transition temperature was 17 K at 96 and 120 GPa.

Palladium hydride: In 2003 a group of researchers published results on high-temperature superconductivity in palladium hydride (PdHx: x>1)[3] and an explanation in 2004.[4] In 2007 the same group published results suggesting a superconducting transition temperature of 260 K.[5] The superconducting critical temperature increases as the density of hydrogen inside the palladium lattice increases.

A report of room temperature superconductivity was made in 2000 by J. F. Prins within a phase formed on the surface of oxygen-doped type IIa diamonds in a 10-6 mbar vacuum.[6] Prins said to be able to explain this in terms of a self-developed theory using a Wigner-type mechanism.[7][8] As of 2010 there is no record of any independent investigation which has either confirmed or disproved these results.

Theory

Theoretical work by Neil Ashcroft predicted that solid metallic hydrogen at extremely high pressure (~500 GPa) should become superconducting at approximately room-temperature because of its extremely high speed of sound and expected strong coupling between the conduction electrons and the lattice vibrations.[9] This prediction is yet to be experimentally verified. As yet the pressure to achieve metallic hydrogen is not known but may be of the order of 500 GPa.

Exciton Coupling

William A. Little[10] proposed high temperature exciton-coupled superconductors, (—C(Ar)=(Ar)C—)n or (=(Ar)C—C(Ar)=)n where "Ar" is a polarizable chromphore (dye).

Replace Bardeen-Cooper-Shrieffer large mass phonons (quantized lattice vibrations re Debye temperature) with small mass excitons (quantized bound states of electrons and holes), energies around 2 eV or 23,000° K. Exciton-mediated electron pairing offers very high critical temperatures even given weak coupling.

Required are 1) A linear trans-polyacetylene core, 2) with pendant polarizable chromphores, 3) said chromophores' pi-clouds being no more than one sigma-bond from the core, and 4) the core being entirely enveloped by a cylindrical pi-cloud. Perhaps n— or p—dope the polymer. Solubility for polymer synthesis and fiber fabrication requires chains ("hair") on the chromphores: oligomers of hydrocarbon, fluorous chains, ethylene oxide, propylene oxide, dimethylsiloxane, etc.

Acyclic diene metathesis (ADMET)[11] living polymerization gives low dispersivity polymer and allows controlled block copolymer products (e.g., redox gradients, molecular diodes, quantum wells). Terminate with sulfur species for spontaneous attachment to gold electrodes.

diaryl benzil plus Tebbe methylenation[12] → 2,3-diarylbutadiene → plus ADMET (Schrock olefin catalysisorGrubbs' catalyst) → Little superconductor plus ethylene (irreversibly exsolved from reaction medium)[13]

O=C(Ar)—(Ar)C=O → H2C=C(Ar)—(Ar)C=CH2 → (=C(Ar)—(Ar)C=)n plus H2C=CH2

(Following png HyperChem stereograms omit hydrogens and multiple bonds for easy viewing). Three model systems directly obtain: Proof-of-synthesis polymer from benzil, then add pi-stacking and fluorescent excitation, then chromophore rotation into a supercon molecular coaxial cable. Little's long wavelength chromophores attach in kind. A good idea need only be testable. Theory predicts what observation tells it to predict.

References

  1. ^ "EE Times corrects story on silane as a potential superconductor" (Document). EE Times. 24 March 2008. {{cite document}}: Unknown parameter |accessdate= ignored (help); Unknown parameter |url= ignored (help)
  • ^ M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, Y. Yao (2008). "Superconductivity in Hydrogen Dominant Materials: Silane". Science. 319 (5869): 1506–1509. Bibcode:2008Sci...319.1506E. doi:10.1126/science.1153282. PMID 18339933.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ Physica C 388-389 (2003) p.571-572 Possibility of high temperature superconducting phases in PdH,
  • ^ Physica C 408-410 (2004) p.350-352 Superconductivity in PdH: phenomenological explanation
  • ^ Tripodi; Di Gioacchino, Daniele; Vinko, Jenny Darja; et al. (2007). "A review of high temperature superconducting property of PdH system,". International Journal of Modern Physics B. 21 (18&19). International Journal of Modern Physics B: 3343–3347. Bibcode:2007IJMPB..21.3343T. doi:10.1142/S0217979207044524. {{cite journal}}: Explicit use of et al. in: |author= (help)
  • ^ http://rtn.elektronika.lt/mi/0304/2prins.pdf
  • ^ Johan Prins (September 2010). "23. The Mechanism". The Physics Delusion. Sage Wise 66 (Pty) Ltd. ISBN 978-0-620-48462-6. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  • ^ "Room temperature superconductivity: One step closer to the Holy Grail of physics". physicsorg.com. 9 July 2008. Retrieved 2011-05-16.
  • ^ N. W. Ashcroft (1968). "Metallic Hydrogen: A High-Temperature Superconductor?". Physical Review Letters. 21 (26): 1748–1749. Bibcode:1968PhRvL..21.1748A. doi:10.1103/PhysRevLett.21.1748.
  • ^ Phys. Rev. 134 A1416-A1424 (1964), Possibility of Synthesizing an Organic Superconductor
  • ^ "Recent Advances in ADMET Polymerization" "Advances in Polymer Science" M Buchmeiser, Ed., 176 1-42 (2005); "Handbook of Metathesis" RH Grubbs, Ed., Vol. 3, Chap. 9, pp. 283-353 (Wiley-VCH, Pubs., 2003)
  • ^ Curr. Org. Synth. 2(2) 231 (2005): Julia (S), Peterson (Si), Nysted (Zn), Tebbe (Ti), Petasis (Ti), Takeda (Ti), Takai (Ti,Zn) methylenations
  • ^ Acc. Chem. Res. 38(9) 745-754 (2005), http://pubs.acs.org/cen/coverstory/8051/8051olefin.html, http://www.platinummetalsreview.com/dynamic/article/view/50-1-35-37 and references therein
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Room-temperature_superconductor&oldid=499349152"

    Category: 
    Superconductors
    Hidden categories: 
    CS1 errors: unsupported parameter
    CS1 maint: multiple names: authors list
    CS1 errors: explicit use of et al.
    CS1 errors: external links
    Articles containing potentially dated statements from 2010
    All articles containing potentially dated statements
     



    This page was last edited on 25 June 2012, at 21:48 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki