Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Editing Schmitt trigger

















Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Wikidata item
 
















Appearance
   

 










You are not logged in. Your IP address will be publicly visible if you make any edits. If you log inorcreate an account, your edits will be attributed to a username, among other benefits.

 Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.


Latest revision Your text
Line 74: Line 74:


=== Op-amp implementations ===

=== Op-amp implementations ===

Schmitt triggers are commonly implemented using an [[operational amplifier]] or a dedicated [[comparator]].<ref group="nb">Usually, negative feedback is used in op-amp circuits. Some operational amplifiers are designed to be used only in negative-feedback configurations that enforce a negligible difference between the inverting and non-inverting inputs. They incorporate input-protection circuitry that prevent the inverting and non-inverting inputs from operating far away from each other. For example, [[Clipper (electronics)|clipper circuits]] made up of two general purpose [[diode]]s with opposite bias in parallel [http://www.analog.com/library/analogdialogue/archives/42-10/off_amps.html] or two [[Zener diode]]s with opposite bias in series (i.e., a [[double-anode Zener diode]]) are sometimes used internally across the two inputs of the operational amplifier. In these cases, the operational amplifiers will fail to function well as comparators. Conversely, comparators are designed under the assumption that the input voltages can differ significantly.</ref> An [[Open-loop gain|open-loop]] op-amp and comparator may be considered as an analog-digital device having analog inputs and a digital output that extracts the [[sign function|sign]] of the voltage difference between its two inputs.<ref group="nb">When the non-inverting (+) input is at a higher voltage than the inverting (&minus;) input, the comparator output switches nearly to +''V''<sub>S</sub>, which is its high supply voltage. When the non-inverting (+) input is at a lower voltage than the inverting (&minus;) input, the comparator output switches nearly to -''V''<sub>S</sub>, which is its low supply voltage.</ref> The positive feedback is applied by adding a part of the output voltage to the input voltage in [[#Inverting Schmitt trigger|series]] or [[#Non-inverting Schmitt trigger|parallel]] manner. Due to the extremely high op-amp gain, the loop gain is also high enough and provides the avalanche-like process.

Schmitt triggers are commonly implemented using an [[operational amplifier]] or a dedicated [[comparator]].<ref group="nb">Usually, negative feedback is used in op-amp circuits. Some operational amplifiers are designed to be used only in negative-feedback configurations that enforce a negligible difference between the inverting and non-inverting inputs. They incorporate input-protection circuitry that prevent the inverting and non-inverting inputs from operating far away from each other. For example, [[Clipper (electronics)|clipper circuits]] made up of two general purpose [[Diode|diodes]] with opposite bias in parallel [http://www.analog.com/library/analogdialogue/archives/42-10/off_amps.html] or two [[Zener diode|Zener diodes]] with opposite bias in series (i.e., a [[double-anode Zener diode]]) are sometimes used internally across the two inputs of the operational amplifier. In these cases, the operational amplifiers will fail to function well as comparators. Conversely, comparators are designed under the assumption that the input voltages can differ significantly.</ref> An [[Open-loop gain|open-loop]] op-amp and comparator may be considered as an analog-digital device having analog inputs and a digital output that extracts the [[sign function|sign]] of the voltage difference between its two inputs.<ref group="nb">When the non-inverting (+) input is at a higher voltage than the inverting (&minus;) input, the comparator output switches nearly to +''V''<sub>S</sub>, which is its high supply voltage. When the non-inverting (+) input is at a lower voltage than the inverting (&minus;) input, the comparator output switches nearly to -''V''<sub>S</sub>, which is its low supply voltage.</ref> The positive feedback is applied by adding a part of the output voltage to the input voltage in [[#Inverting Schmitt trigger|series]] or [[#Non-inverting Schmitt trigger|parallel]] manner. Due to the extremely high op-amp gain, the loop gain is also high enough and provides the avalanche-like process.



==== Non-inverting Schmitt trigger ====

==== Non-inverting Schmitt trigger ====

Line 112: Line 112:

In contrast with the parallel version, this circuit does not impact on the input source since the source is separated from the voltage divider output by the high op-amp input differential impedance.

In contrast with the parallel version, this circuit does not impact on the input source since the source is separated from the voltage divider output by the high op-amp input differential impedance.



In the inverting amplifier voltage drop across resistor (R1) decides the reference voltages i.e., upper threshold voltage (V+) and lower threshold voltages (V−) for the comparison with input signal applied. These voltages are fixed as the output voltage and resistor values are fixed.

In the inverting amplifier voltage drop across resistor (R1) decides the reference voltages i.e.,upper threshold voltage (V+) and lower threshold voltages (V−) for the comparison with input signal applied. These voltages are fixed as the output voltage and resistor values are fixed.



so by changing the drop across (R1) threshold voltages can be varied. By adding a bias voltage in series with resistor (R1) drop across it can be varied, which can change threshold voltages. Desired values of reference voltages can be obtained by varying bias voltage.

so by changing the drop across (R1) threshold voltages can be varied. By adding a bias voltage in series with resistor (R1) drop across it can be varied, which can change threshold voltages. Desired values of reference voltages can be obtained by varying bias voltage.

Line 124: Line 124:

* '''Level detection''''':''&nbsp;&nbsp; The Schmitt trigger circuit is able to provide level detection. When undertaking this application, it is necessary that the hysteresis voltage is taken into account so that the circuit switches on the required voltage.

* '''Level detection''''':''&nbsp;&nbsp; The Schmitt trigger circuit is able to provide level detection. When undertaking this application, it is necessary that the hysteresis voltage is taken into account so that the circuit switches on the required voltage.

* '''Line reception''''':''&nbsp;&nbsp; When running a data line that may have picked up noise into a logic gate it is necessary to ensure that a logic output level is only changed as the data changed and not as a result of spurious noise that may have been picked up. Using a Schmitt trigger broadly enables the peak to peak noise to reach the level of the hysteresis before spurious triggering may occur.

* '''Line reception''''':''&nbsp;&nbsp; When running a data line that may have picked up noise into a logic gate it is necessary to ensure that a logic output level is only changed as the data changed and not as a result of spurious noise that may have been picked up. Using a Schmitt trigger broadly enables the peak to peak noise to reach the level of the hysteresis before spurious triggering may occur.


=== Noise immunity ===

=== Noise immunity ===

One application of a Schmitt trigger is to increase the noise immunity in a circuit with only a single input threshold. With only one input threshold, a [[noise (physics)|noisy]] input signal <ref group="nb">Where the noise amplitude is assumed to be small compared to the change in Schmitt trigger threshold.</ref> near that threshold could cause the output to switch rapidly back and forth from noise alone. A noisy Schmitt Trigger input signal near one threshold can cause only one switch in output value, after which it would have to move beyond the other threshold in order to cause another switch.

One application of a Schmitt trigger is to increase the noise immunity in a circuit with only a single input threshold. With only one input threshold, a [[noise (physics)|noisy]] input signal <ref group="nb">Where the noise amplitude is assumed to be small compared to the change in Schmitt trigger threshold.</ref> near that threshold could cause the output to switch rapidly back and forth from noise alone. A noisy Schmitt Trigger input signal near one threshold can cause only one switch in output value, after which it would have to move beyond the other threshold in order to cause another switch.

By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

Pages transcluded onto the current version of this page (help):

This page is a member of 9 hidden categories (help):


Retrieved from "https://en.wikipedia.org/wiki/Schmitt_trigger"







Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki