Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Natural sources of fresh water  



1.1  Surface water  



1.1.1  Water from glaciers  







1.2  Groundwater  



1.2.1  Under river flow  









2 Artificial sources of usable water  



2.1  Wastewater reuse  





2.2  Desalinated water  







3 Water uses  



3.1  Agriculture and other irrigation  



3.1.1  Irrigation of green spaces and golf courses  







3.2  Industries  





3.3  Drinking water and domestic use (households)  





3.4  Environment  





3.5  Recreation  







4 Challenges and threats  



4.1  Water scarcity  





4.2  Water pollution  





4.3  Water conflict  





4.4  Climate change  







5 Management and governance  





6 By country  





7 See also  





8 References  





9 External links  














Water resources: Difference between revisions






العربية
Azərbaycanca
تۆرکجه

Català
Eesti
Эрзянь
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Bahasa Indonesia
Italiano

Қазақша
Македонски
Мокшень

Norsk bokmål
Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Suomi
ி


Тоҷикӣ
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
View source
View history
 








Tools
   


Actions  



Read
View source
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
bigger
→‎Management and governance: added info about target 6.5
Line 191: Line 191:

{{Main|Water resource management|Integrated water resources management|Water resources law}}

{{Main|Water resource management|Integrated water resources management|Water resources law}}

[[Water resource management]] and governance is handled differently by different countries. For example, in the [[United States]], the [[United States Geological Survey]] (USGS) and its partners monitor water resources, conduct research and inform the public about groundwater quality.<ref>{{Cite web|title=Water Resources|url=https://www.usgs.gov/mission-areas/water-resources|access-date=2021-09-17|website=www.usgs.gov|language=en}}</ref>

[[Water resource management]] and governance is handled differently by different countries. For example, in the [[United States]], the [[United States Geological Survey]] (USGS) and its partners monitor water resources, conduct research and inform the public about groundwater quality.<ref>{{Cite web|title=Water Resources|url=https://www.usgs.gov/mission-areas/water-resources|access-date=2021-09-17|website=www.usgs.gov|language=en}}</ref>


[[Sustainable Development Goal 6]] has a target related to water resources management: "Target 6.5: By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate."<ref name=":3">Ritchie, Roser, Mispy, Ortiz-Ospina (2018) [https://sdg-tracker.org/water-and-sanitation "Measuring progress towards the Sustainable Development Goals." (SDG 6)] ''SDG-Tracker.org, website''</ref><ref name=":17">United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, [[:File:A RES 71 313 E.pdf|Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development]] ([https://undocs.org/A/RES/71/313 A/RES/71/313])</ref>



==By country==

==By country==


Revision as of 14:39, 17 May 2022

Global values of water resources and human water use (excluding Antarctica). Water resources 1961-90, water use around 2000. Computed by the global freshwater model WaterGAP.

Water resources are natural resourcesofwater that are potentially useful for humans[1], for example as a source of drinking water supplyorirrigation water. 97% of the water on the Earth is salt water and only three percent is fresh water; slightly over two thirds of this is frozen in glaciers and polar ice caps.[2] The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air.[3] Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. Artificial sources of fresh water can include treated wastewater (wastewater reuse) and desalinated seawater. Human uses of water resources include agricultural, industrial, household, recreational and environmental activities.

Water resources are under threat from water scarcity, water pollution, water conflict and climate change. Fresh water is a renewable resource, yet the world's supply of groundwater is steadily decreasing, with depletion occurring most prominently in Asia, South America and North America, although it is still unclear how much natural renewal balances this usage, and whether ecosystems are threatened.[4] The framework for allocating water resources to water users (where such a framework exists) is known as water rights.

Natural sources of fresh water

Natural sources of fresh water include surface water, under river flow, groundwater and frozen water.

Surface water

Lake Chungará and Parinacota volcano in northern Chile

Surface water is water in a river, lake or fresh water wetland. Surface water is naturally replenished by precipitation and naturally lost through discharge to the oceans, evaporation, evapotranspiration and groundwater recharge. The only natural input to any surface water system is precipitation within its watershed. The total quantity of water in that system at any given time is also dependent on many other factors. These factors include storage capacity in lakes, wetlands and artificial reservoirs, the permeability of the soil beneath these storage bodies, the runoff characteristics of the land in the watershed, the timing of the precipitation and local evaporation rates. All of these factors also affect the proportions of water loss.

Humans often increase storage capacity by constructing reservoirs and decrease it by draining wetlands. Humans often increase runoff quantities and velocities by paving areas and channelizing the stream flow.

Natural surface water can be augmented by importing surface water from another watershed through a canalorpipeline.

Brazil is estimated to have the largest supply of fresh water in the world, followed by Russia and Canada.[5]

Water from glaciers

Glacier runoff is considered to be surface water. The Himalayas, which are often called "The Roof of the World", contain some of the most extensive and rough high altitude areas on Earth as well as the greatest area of glaciers and permafrost outside of the poles. Ten of Asia's largest rivers flow from there, and more than a billion people's livelihoods depend on them. To complicate matters, temperatures there are rising more rapidly than the global average. In Nepal, the temperature has risen by 0.6 degrees Celsius over the last decade, whereas globally, the Earth has warmed approximately 0.7 degrees Celsius over the last hundred years.[6]

Groundwater

Relative groundwater travel times in the subsurface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fracturesofrock formations. About 30 percent of all readily available freshwater in the world is groundwater.[7] A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oasesorwetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Typically, groundwater is thought of as water flowing through shallow aquifers, but, in the technical sense, it can also contain soil moisture, permafrost (frozen soil), immobile water in very low permeability bedrock, and deep geothermaloroil formation water. Groundwater is hypothesized to provide lubrication that can possibly influence the movement of faults. It is likely that much of Earth's subsurface contains some water, which may be mixed with other fluids in some instances.

Under river flow

Throughout the course of a river, the total volume of water transported downstream will often be a combination of the visible free water flow together with a substantial contribution flowing through rocks and sediments that underlie the river and its floodplain called the hyporheic zone. For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow. The hyporheic zone often forms a dynamic interface between surface water and groundwater from aquifers, exchanging flow between rivers and aquifers that may be fully charged or depleted. This is especially significant in karst areas where pot-holes and underground rivers are common.

Artificial sources of usable water

Artificial sources of fresh water can include treated wastewater (reclaimed water) and desalinated seawater. However, economic and environmental side effects of these technologies must also be taken into consideration.[8]

Wastewater reuse

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes . It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical.[9] Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.[10]

There are several technologies used to treat wastewater for reuse. A combination of these technologies can meet strict treatment standards and make sure that the processed water is hygienically safe, meaning free from pathogens. The following are some of the typical technologies: Ozonation, ultrafiltration, aerobic treatment (membrane bioreactor), forward osmosis, reverse osmosis, and advanced oxidation,[11]oractivated carbon.[12] Some water-demanding activities do not require high grade water. In this case, wastewater can be reused with little or no treatment.

Desalinated water

Desalination is a process that removes mineral components from saline water. More generally, desalination is the removal of salts and minerals from a substance.[13] One example is soil desalination. This is important for agriculture. It is possible to desalinate saltwater, especially sea water, to produce water for human consumptionorirrigation. The by-product of the desalination process is brine.[14] Many seagoing ships and submarines use desalination. Modern interest in desalination mostly focuses on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few water resources independent of rainfall.[15]

Due to its energy consumption, desalinating sea water is generally more costly than fresh water from surface waterorgroundwater, water recycling and water conservation; however, these alternatives are not always available and depletion of reserves is a critical problem worldwide.[16][17] Desalination processes are using either thermal methods (in the case of distillation) or membrane-based methods (e.g. in the case of reverse osmosis) energy types.[18][19]: 24 

Water uses

The total quantity of water available at any given time is an important consideration. Some human water users have an intermittent need for water. For example, many farms require large quantities of water in the spring, and no water at all in the winter. To supply such a farm with water, a surface water system may require a large storage capacity to collect water throughout the year and release it in a short period of time. Other users have a continuous need for water, such as a power plant that requires water for cooling. To supply such a power plant with water, a surface water system only needs enough storage capacity to fill in when average stream flow is below the power plant's need. Nevertheless, over the long term the average rate of precipitation within a watershed is the upper bound for average consumption of natural surface water from that watershed.

Agriculture and other irrigation

It is estimated that 70% of worldwide water is used for irrigation, with 15–35% of irrigation withdrawals being unsustainable.[20] It takes around 2,000 – 3,000 litres of water to produce enough food to satisfy one person's daily dietary need.[21] This is a considerable amount, when compared to that required for drinking, which is between two and five litres. To produce food for the now over 7 billion people who inhabit the planet today requires the water that would fill a canal ten metres deep, 100 metres wide and 2100 kilometres long.

An assessment of water management in agriculture sector was conducted in 2007 by the International Water Management InstituteinSri Lanka to see if the world had sufficient water to provide food for its growing population.[22] It assessed the current availability of water for agriculture on a global scale and mapped out locations suffering from water scarcity. It found that a fifth of the world's people, more than 1.2 billion, live in areas of physical water scarcity, where there is not enough water to meet all demands. A further 1.6 billion people live in areas experiencing economic water scarcity, where the lack of investment in water or insufficient human capacity make it impossible for authorities to satisfy the demand for water. The report found that it would be possible to produce the food required in future, but that continuation of today's food production and environmental trends would lead to crises in many parts of the world. To avoid a global water crisis, farmers will have to strive to increase productivity to meet growing demands for food, while industry and cities find ways to use water more efficiently.[23][24]

In some areas of the world, irrigation is necessary to grow any crop at all, in other areas it permits more profitable crops to be grown or enhances crop yield. Various irrigation methods involve different trade-offs between crop yield, water consumption and capital cost of equipment and structures. Irrigation methods such as furrow and overhead sprinkler irrigation are usually less expensive but are also typically less efficient, because much of the water evaporates, runs off or drains below the root zone. Other irrigation methods considered to be more efficient include drip or trickle irrigation, surge irrigation, and some types of sprinkler systems where the sprinklers are operated near ground level. These types of systems, while more expensive, usually offer greater potential to minimize runoff, drainage and evaporation. Any system that is improperly managed can be wasteful, all methods have the potential for high efficiencies under suitable conditions, appropriate irrigation timing and management. Some issues that are often insufficiently considered are salinization of groundwater and contaminant accumulation leading to water quality declines.

As global populations grow, and as demand for food increases, there are efforts under way to learn how to produce more food with less water, through improvements in irrigation[25] methods[26] and technologies, agricultural water management, crop types, and water monitoring. Aquaculture is a small but growing agricultural use of water. Freshwater commercial fisheries may also be considered as agricultural uses of water, but have generally been assigned a lower priority than irrigation (see Aral Sea and Pyramid Lake).

Changing landscape for the use of agriculture has a great effect on the flow of fresh water. Changes in landscape by the removal of trees and soils changes the flow of fresh water in the local environment and also affects the cycle of fresh water. As a result, more fresh water is stored in the soil which benefits the agriculture. However, since agriculture is the human activity that consumes the most fresh water,[27] this can put a severe strain on local freshwater resources resulting in the destruction of local ecosystems.

InAustralia, over-abstraction of fresh water for intensive irrigation activities has caused 33% of the land area to be at risk of salination.[27]

Water requirements of different classes of livestock[28]
Animal Average / day Range / day
Dairy cow 76 L (20 US gal) 57 to 95 L (15 to 25 US gal)
Cow-calf pair 57 L (15 US gal) 8 to 76 L (2 to 20 US gal)
Yearling cattle 38 L (10 US gal) 23 to 53 L (6 to 14 US gal)
Horse 38 L (10 US gal) 30 to 53 L (8 to 14 US gal)
Sheep 8 L (2 US gal) 8 to 11 L (2 to 3 US gal)


Approximate values of seasonal crop water needs[29]
Crop Crop water needs mm / total growing period
Sugar Cane 1500–2500
Banana 1200–2200
Citrus 900–1200
Potato 500–700
Tomato 400–800
Barley/Oats/Wheat 450–650
Cabbage 350–500
Onions 350–550
Pea 350–500

Irrigation of green spaces and golf courses

Urban green spaces and golf courses usually require some form of irrigation. Golf courses are often targeted as using excessive amounts of water, especially in drier regions. Many golf courses utilize either primarily or exclusively treated effluent water, which has little impact on potable water availability.

Industries

A power plant in Poland

It is estimated that 22% of worldwide water is used in industry.[20] Major industrial users include hydroelectric dams, thermoelectric power plants, which use water for cooling, ore and oil refineries, which use water in chemical processes, and manufacturing plants, which use water as a solvent. Water withdrawal can be very high for certain industries, but consumption is generally much lower than that of agriculture.

Water is used in renewable power generation. Hydroelectric power derives energy from the force of water flowing downhill, driving a turbine connected to a generator. This hydroelectricity is a low-cost, non-polluting, renewable energy source. Significantly, hydroelectric power can also be used for load following unlike most renewable energy sources which are intermittent. Ultimately, the energy in a hydroelectric power plant is supplied by the sun. Heat from the sun evaporates water, which condenses as rain in higher altitudes and flows downhill. Pumped-storage hydroelectric plants also exist, which use grid electricity to pump water uphill when demand is low, and use the stored water to produce electricity when demand is high.

Hydroelectric power plants generally require the creation of a large artificial lake. Evaporation from this lake is higher than evaporation from a river due to the larger surface area exposed to the elements, resulting in much higher water consumption. The process of driving water through the turbine and tunnels or pipes also briefly removes this water from the natural environment, creating water withdrawal. The impact of this withdrawal on wildlife varies greatly depending on the design of the power plant.

Pressurized water is used in water blasting and water jet cutters. Also, very high pressure water guns are used for precise cutting. It works very well, is relatively safe, and is not harmful to the environment. It is also used in the cooling of machinery to prevent overheating, or prevent saw blades from overheating. This is generally a very small source of water consumption relative to other uses.

Water is also used in many large scale industrial processes, such as thermoelectric power production, oil refining, fertilizer production and other chemical plant use, and natural gas extraction from shale rock. Discharge of untreated water from industrial uses is pollution. Pollution includes discharged solutes (chemical pollution) and increased water temperature (thermal pollution). Industry requires pure water for many applications and utilizes a variety of purification techniques both in water supply and discharge. Most of this pure water is generated on site, either from natural freshwater or from municipal grey water. Industrial consumption of water is generally much lower than withdrawal, due to laws requiring industrial grey water to be treated and returned to the environment. Thermoelectric power plants using cooling towers have high consumption, nearly equal to their withdrawal, as most of the withdrawn water is evaporated as part of the cooling process. The withdrawal, however, is lower than in once-through cooling systems.

Drinking water and domestic use (households)

Drinking water

It is estimated that 8% of worldwide water use is for domestic purposes.[20] These include drinking water, bathing, cooking, toilet flushing, cleaning, laundry and gardening. Basic domestic water requirements have been estimated by Peter Gleick at around 50 liters per person per day, excluding water for gardens.

Drinking water is water that is of sufficiently high quality so that it can be consumed or used without risk of immediate or long term harm. Such water is commonly called potable water. In most developed countries, the water supplied to domestic, commerce and industry is all of drinking water standard even though only a very small proportion is actually consumed or used in food preparation.

844 million people still lacked even a basic drinking water service in 2017.[30]: 3  Of those, 159 million people worldwide drink water directly from surface water sources, such as lakes and streams.[30]: 3 

One in eight people in the world do not have access to safe water.[31][32] Inappropriate use of water may contribute to this problem. The following tables provide some indicators of water use.

Recommended basic water requirements for human needs (per person)[33]
Activity Minimum, litres / day Range / day
Drinking Water 5 2–5
Sanitation Services 20 20–75
Bathing 15 5–70
Cooking and Kitchen 10 10–50

Environment

Explicit environment water use is also a very small but growing percentage of total water use. Environmental water may include water stored in impoundments and released for environmental purposes (held environmental water), but more often is water retained in waterways through regulatory limits of abstraction.[34] Environmental water usage includes watering of natural or artificial wetlands, artificial lakes intended to create wildlife habitat, fish ladders, and water releases from reservoirs timed to help fish spawn, or to restore more natural flow regimes.[35]

Environmental usage is non-consumptive but may reduce the availability of water for other users at specific times and places. For example, water release from a reservoir to help fish spawn may not be available to farms upstream, and water retained in a river to maintain waterway health would not be available to water abstractors downstream.

Recreation

Recreational water use is mostly tied to lakes, dams, rivers or oceans. If a water reservoir is kept fuller than it would otherwise be for recreation, then the water retained could be categorized as recreational usage. Examples are anglers, water skiers, nature enthusiasts and swimmers.

Recreational usage is usually non-consumptive. However, recreational usage may reduce the availability of water for other users at specific times and places. For example, water retained in a reservoir to allow boating in the late summer is not available to farmers during the spring planting season. Water released for whitewater rafting may not be available for hydroelectric generation during the time of peak electrical demand.

Total renewable freshwater resources of the world, in mm/yr ( 1 mm is equivalent to 1 l of water per m²) (long-term average for the years 1961-1990). Resolution is 0.5° longitude x 0.5° latitude (equivalent to 55 km x 55 km at the equator). Computed by the global freshwater model WaterGAP.

Challenges and threats

Threats for the availability of water resources include: Water scarcity, water pollution, water conflict and climate change.

Water scarcity

Water scarcity (closely related to water stress or water crisis) is the lack of fresh water resources to meet the standard water demand. There are two type of water scarcity. One is physical. The other is economic water scarcity.[36]: 560  Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity.[37] Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand.[36]: 560  Many people in Sub-Saharan Africa are living with economic water scarcity.[38]: 11 

Water pollution

Polluted water
Water pollution (or aquatic pollution) is the contamination of water bodies, with a negative impact on their uses.[39]: 6  It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater.[40] Water pollution may affect either surface waterorgroundwater. This form of pollution can lead to many problems. One is the degradationofaquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation.[41] Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

Water conflict

Ethiopia's move to fill the dam's reservoir could reduce Nile flows by as much as 25% and devastate Egyptian farmlands.[42]
Water conflict typically refers to violence or disputes associated with access to, or control of, water resources, or the use of water or water systems as weapons or casualties of conflicts. The term water war is colloquially used in media for some disputes over water, and often is more limited to describing a conflict between countries, states, or groups over the rights to access water resources.[43][44] The United Nations recognizes that water disputes result from opposing interests of water users, public or private.[45] A wide range of water conflicts appear throughout history, though they are rarely traditional wars waged over water alone.[46] Instead, water has long been a source of tension and one of the causes for conflicts. Water conflicts arise for several reasons, including territorial disputes, a fight for resources, and strategic advantage.[47]

Climate change

Climate change could have a big impact on water resources around the world because of the close connections between the climate and hydrological cycle. Rising temperatures will increase evaporation and lead to increases in precipitation. However there will be regional variations in rainfall. Both droughts and floods may become more frequent and more severe in different regions at different times. There will be generally less snowfall and more rainfall in a warmer climate.[48] Changes in snowfall and snow melt in mountainous areas will also take place. Higher temperatures will also affect water quality in ways that scientists do not fully understand. Possible impacts include increased eutrophication. Climate change could also boost demand for irrigation systems in agriculture. There is now ample evidence that greater hydrologic variability and climate change have had a profound impact on the water sector, and will continue to do so. This will show up in the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels.[49]

The United Nations' FAO states that by 2025 1.9 billion people will live in countries or regions with absolute water scarcity. It says two thirds of the world's population could be under stress conditions.[50] The World Bank says that climate change could profoundly alter future patterns of water availability and use. This will make water stress and insecurity worse, at the global level and in sectors that depend on water.[51]

Management and governance

Water resource management and governance is handled differently by different countries. For example, in the United States, the United States Geological Survey (USGS) and its partners monitor water resources, conduct research and inform the public about groundwater quality.[52]

Sustainable Development Goal 6 has a target related to water resources management: "Target 6.5: By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate."[53][54]

By country

Water resources in specific countries are described below:

See also

References

  1. ^ "water resource | Britannica". www.britannica.com. Retrieved 2022-05-17.
  • ^ "Earth's water distribution". United States Geological Survey. Retrieved 2009-05-13.
  • ^ "Scientific Facts on Water: State of the Resource". GreenFacts Website. Retrieved 2008-01-31.
  • ^ Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F. P.; van Beek, Ludovicus P. H. (9 August 2012). "Water balance of global aquifers revealed by groundwater footprint". Nature. 488 (7410): 197–200. Bibcode:2012Natur.488..197G. doi:10.1038/nature11295. PMID 22874965. S2CID 4393813.
  • ^ "The World's Water 2006–2007 Tables, Pacific Institute". Worldwater.org. Retrieved 2009-03-12.
  • ^ Pulitzer Center on Crisis Reporting Archived July 23, 2009, at the Wayback Machine
  • ^ "What is Groundwater? | International Groundwater Resources Assessment Centre". www.un-igrac.org. Retrieved 2022-03-14.
  • ^ van Vliet, Michelle T H; Jones, Edward R; Flörke, Martina; Franssen, Wietse H P; Hanasaki, Naota; Wada, Yoshihide; Yearsley, John R (2021-02-01). "Global water scarcity including surface water quality and expansions of clean water technologies". Environmental Research Letters. 16 (2): 024020. Bibcode:2021ERL....16b4020V. doi:10.1088/1748-9326/abbfc3. ISSN 1748-9326.
  • ^ Tuser, Cristina (May 24, 2022). "What is potable reuse?". Wastewater Digest. Retrieved 2022-08-29.
  • ^ Andersson, K., Rosemarin, A., Lamizana, B., Kvarnström, E., McConville, J., Seidu, R., Dickin, S. and Trimmer, C. (2016). Sanitation, Wastewater Management and Sustainability: from Waste Disposal to Resource Recovery. Nairobi and Stockholm: United Nations Environment Programme and Stockholm Environment Institute. ISBN 978-92-807-3488-1
  • ^ Warsinger, David M.; Chakraborty, Sudip; Tow, Emily W.; Plumlee, Megan H.; Bellona, Christopher; Loutatidou, Savvina; Karimi, Leila; Mikelonis, Anne M.; Achilli, Andrea; Ghassemi, Abbas; Padhye, Lokesh P.; Snyder, Shane A.; Curcio, Stefano; Vecitis, Chad D.; Arafat, Hassan A.; Lienhard, John H. (2018). "A review of polymeric membranes and processes for potable water reuse". Progress in Polymer Science. 81: 209–237. doi:10.1016/j.progpolymsci.2018.01.004. ISSN 0079-6700. PMC 6011836. PMID 29937599.
  • ^ Takman, Maria; Svahn, Ola; Paul, Catherine; Cimbritz, Michael; Blomqvist, Stefan; Struckmann Poulsen, Jan; Lund Nielsen, Jeppe; Davidsson, Åsa (2023-10-15). "Assessing the potential of a membrane bioreactor and granular activated carbon process for wastewater reuse – A full-scale WWTP operated over one year in Scania, Sweden". Science of the Total Environment. 895: 165185. Bibcode:2023ScTEn.89565185T. doi:10.1016/j.scitotenv.2023.165185. ISSN 0048-9697. PMID 37385512.
  • ^ "Desalination" (definition), The American Heritage Science Dictionary, via dictionary.com. Retrieved August 19, 2007.
  • ^ Panagopoulos, Argyris; Haralambous, Katherine-Joanne; Loizidou, Maria (2019-11-25). "Desalination brine disposal methods and treatment technologies - A review". The Science of the Total Environment. 693: 133545. Bibcode:2019ScTEn.69333545P. doi:10.1016/j.scitotenv.2019.07.351. ISSN 1879-1026. PMID 31374511. S2CID 199387639.
  • ^ Fischetti, Mark (September 2007). "Fresh from the Sea". Scientific American. 297 (3): 118–119. Bibcode:2007SciAm.297c.118F. doi:10.1038/scientificamerican0907-118. PMID 17784633.
  • ^ Ebrahimi, Atieh; Najafpour, Ghasem D; Yousefi Kebria, Daryoush (2019). "Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions". Desalination. 432: 1. doi:10.1016/j.desal.2018.01.002.
  • ^ "Making the Deserts Bloom: Harnessing nature to deliver us from drought, Distillations Podcast and transcript, Episode 239". Science History Institute. March 19, 2019. Retrieved 27 August 2019.
  • ^ Cohen, Yoram (2021). "Advances in Water Desalination Technologies". Materials and Energy. Vol. 17. WORLD SCIENTIFIC. doi:10.1142/12009. ISBN 978-981-12-2697-7. ISSN 2335-6596. S2CID 224974880.
  • ^ Alix, Alexandre; Bellet, Laurent; Trommsdorff, Corinne; Audureau, Iris, eds. (2022). Reducing the Greenhouse Gas Emissions of Water and Sanitation Services: Overview of emissions and their potential reduction illustrated by utility know-how. IWA Publishing. doi:10.2166/9781789063172. ISBN 978-1-78906-317-2. S2CID 250128707.
  • ^ UN Water – Coping with Water Scarcity 2007. fao.org
  • ^ Molden, D. (Ed.) (2007) Water for food, Water for life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan/IWMI.
  • ^ Chartres, C. and Varma, S. (2010) Out of water. From Abundance to Scarcity and How to Solve the World’s Water Problems FT Press (USA).
  • ^ Haie, Naim (2020). Transparent Water Management Theory: Sefficiency in Sequity (PDF). Springer.
  • ^ "Water Development and Management Unit – Topics – Irrigation". FAO. Retrieved 2009-03-12.
  • ^ "FAO Water Unit | Water News: water scarcity". Fao.org. Retrieved 2009-03-12.
  • ^ a b Gordon L., D. M. (2003). "Land cover change and water vapour flows: learning from Australia". Philosophical Transactions of the Royal Society B: Biological Sciences. 358 (1440): 1973–1984. doi:10.1098/rstb.2003.1381. JSTOR 3558315. PMC 1693281. PMID 14728792.
  • ^ Filley, S. "How much does a cow need ?" (PDF). Archived from the original (PDF) on 12 May 2012. Retrieved 17 March 2012.
  • ^ Natural Resource Management and Environmental Dept. "Crops Need Water". Archived from the original on 16 January 2012. Retrieved 17 March 2012.
  • ^ a b WHO, UNICEF (2017). Progress on drinking water, sanitation and hygiene : 2017 update and SDG baselines. Geneva. ISBN 978-9241512893. OCLC 1010983346.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ "Global WASH Fast Facts | Global Water, Sanitation and Hygiene | Healthy Water | CDC". www.cdc.gov. 2018-11-09. Retrieved 2019-04-09.
  • ^ Water Aid. "Water". Archived from the original on 16 April 2013. Retrieved 17 March 2012.
  • ^ Gleick, Peter. "Basic Water Requirements for Human Activities" (PDF). Archived (PDF) from the original on 29 June 2013. Retrieved 17 March 2012.
  • ^ National Water Commission (2010). Australian environmental water management report. NWC, Canberra
  • ^ "Aral Sea trickles back to life". Silk Road Intelligencer. Retrieved 2011-12-05.
  • ^ a b Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022: Chapter 4: Water. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006.
  • ^ Rijsberman, Frank R. (2006). "Water scarcity: Fact or fiction?". Agricultural Water Management. 80 (1–3): 5–22. Bibcode:2006AgWM...80....5R. doi:10.1016/j.agwat.2005.07.001.
  • ^ IWMI (2007) Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan, and Colombo: International Water Management Institute.
  • ^ Von Sperling, Marcos (2007). Wastewater Characteristics, Treatment and Disposal. Biological Wastewater Treatment. Vol. 6. IWA Publishing. doi:10.2166/9781780402086. ISBN 978-1-78040-208-6. {{cite book}}: |journal= ignored (help)
  • ^ Eckenfelder Jr WW (2000). Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons. doi:10.1002/0471238961.1615121205031105.a01. ISBN 978-0-471-48494-3.
  • ^ "Water Pollution". Environmental Health Education Program. Cambridge, MA: Harvard T.H. Chan School of Public Health. July 23, 2013. Archived from the original on September 18, 2021. Retrieved September 18, 2021.
  • ^ "In Africa, War Over Water Looms As Ethiopia Nears Completion Of Nile River Dam". NPR. 27 February 2018.
  • ^ Tulloch, James (August 26, 2009). "Water Conflicts: Fight or Flight?". Allianz. Archived from the original on 2008-08-29. Retrieved 14 January 2010.
  • ^ Kameri-Mbote, Patricia (January 2007). "Water, Conflict, and Cooperation: Lessons from the nile river Basin" (PDF). Navigating Peace (4). Woodrow Wilson International Center for Scholars. Archived from the original (PDF) on 2010-07-06.
  • ^ United Nations Potential Conflict to Cooperation Potential, accessed November 21, 2008
  • ^ Peter Gleick, 1993. "Water and conflict." International Security Vol. 18, No. 1, pp. 79-112 (Summer 1993).
  • ^ Heidelberg Institute for International Conflict Research (Department of Political Science, University of Heidelberg); Conflict Barometer 2007:Crises – Wars – Coups d'État – Nagotiations – Mediations – Peace Settlements, 16th annual conflict analysis, 2007
  • ^ "Climate Change Indicators: Snowfall". U.S. Environmental Protection Agency. 2016-07-01. Retrieved 2023-07-10.
  • ^ "Water and Climate Change: Understanding the Risks and Making Climate-Smart Investment Decisions". World Bank. 2009. Archived from the original on 7 April 2012. Retrieved 2011-10-24.
  • ^ "Hot issues: Water scarcity". FAO. Archived from the original on 25 October 2012. Retrieved 27 August 2013.
  • ^ "Water and Climate Change: Understanding the Risks and Making Climate-Smart Investment Decisions". World Bank. 2009. pp. 21–24. Archived from the original on 7 April 2012. Retrieved 24 October 2011.
  • ^ "Water Resources". www.usgs.gov. Retrieved 2021-09-17.
  • ^ Ritchie, Roser, Mispy, Ortiz-Ospina (2018) "Measuring progress towards the Sustainable Development Goals." (SDG 6) SDG-Tracker.org, website
  • ^ United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Water_resources&oldid=1088352378"

    Categories: 
    Aquatic ecology
    Hydrology
    Irrigation
    Water
    Water and the environment
    Water management
    Water supply
    Hidden categories: 
    Webarchive template wayback links
    CS1 maint: location missing publisher
    CS1 errors: periodical ignored
    Articles with short description
    Short description is different from Wikidata
    Wikipedia pages move-protected due to vandalism
    Wikipedia indefinitely move-protected pages
    Articles with excerpts
    Articles with EMU identifiers
     



    This page was last edited on 17 May 2022, at 14:39 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki