Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Types  



2.1  Blood agar  



2.1.1  Blood agar plate  





2.1.2  Chocolate agar  





2.1.3  ThayerMartin agar  





2.1.4  Thiosulfatecitratebile saltssucrose agar  







2.2  General bacterial media  





2.3  Fungal media  





2.4  Moss media  





2.5  Yeast media  





2.6  Mega Plate  







3 See also  





4 References  





5 External links  














Agar plate






العربية
Dansk
Español
فارسی
Français
Galego

Bahasa Indonesia
Italiano
Jawa


Polski
Simple English
Svenska
Türkçe

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Agar plates)

Agar plate
An agar culture of E. coli colonies
UsesMicrobiological culture
Art
Related itemsPetri dish
Growth medium
Contamination on an agar plate

Anagar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.[1]

96 pinner used to perform spot assays with yeast, fungal or bacterial cells

Individual microorganisms placed on the plate will grow into individual colonies, each a clone genetically identical to the individual ancestor organism (except for the low, unavoidable rate of mutation). Thus, the plate can be used either to estimate the concentration of organisms in a liquid culture or a suitable dilution of that culture using a colony counter, or to generate genetically pure cultures from a mixed culture of genetically different organisms.

Several methods are available to plate out cells. One technique is known as "streaking". In this technique, a drop of the culture on the end of a thin, sterile loop of wire, sometimes known as an inoculator, is streaked across the surface of the agar leaving organisms behind, a higher number at the beginning of the streak and a lower number at the end. At some point during a successful "streak", the number of organisms deposited will be such that distinct individual colonies will grow in that area which may be removed for further culturing, using another sterile loop.

Another way of plating organisms, next to streaking, on agar plates is the spot analysis. This type of analysis is often used to check the viability of cells and performed with pinners (often also called froggers). A third used technique is the use of sterile glass beads to plate out cells. In this technique cells are grown in a liquid culture of which a small volume is pipetted on the agar plate and then spread out with the beads. Replica plating is another technique in order to plate out cells on agar plates. These four techniques are the most common, but others are also possible. It is crucial to work in a sterile manner in order to prevent contamination on the agar plates.[1] Plating is thus often done in a laminar flow cabinet or on the working bench next to a bunsen burner.[2]

History[edit]

In 1881, Fanny Hesse, who was working as a technician for her husband Walther Hesse in the laboratory of Robert Koch, suggested agar as an effective setting agent, since it had been commonplace in jam making for some time.[3]

Types[edit]

An agar plate being viewed in an electronic colony counter
Example of a workup algorithm of possible bacterial infection in cases with no specifically requested targets (non-bacteria, mycobacteria etc.), with most common situations and agents seen in a New England community hospital setting. Different agar plates are used for different specimen sources as seen in upper left quadrant.

Like other growth media, the formulations of agar used in plates may be classified as either "defined" or "undefined"; a defined medium is synthesized from individual chemicals required by the organism so the exact molecular composition is known, whereas an undefined medium is made from natural products such as yeast extract, where the precise composition is unknown.[4]

Agar plates may be formulated as either permissive, with the intent of allowing the growth of whatever organisms are present, or restrictive or selective, with the intent of only allowing growth a particular subset of those organisms.[5] This may take the form of a nutritional requirement, for instance providing a particular compound such as lactose as the only source of carbon and thereby selecting only organisms which can metabolize that compound, or by including a particular antibiotic or other substance to select only organisms which are resistant to that substance. This correlates to some degree with defined and undefined media; undefined media, made from natural products and containing an unknown combination of very many organic molecules, is typically more permissive in terms of supplying the needs of a wider variety of organisms, while defined media can be precisely tailored to select organisms with specific properties.

Agar plates may also be indicator plates, in which the organisms are not selected on the basis of growth, but are instead distinguished by a color change in some colonies, typically caused by the action of an enzyme on some compound added to the medium.[6]

The plates are incubated for 12 hours up to several days depending on the test that is performed.

Commonly used types of agar plates include:

Red blood cells on an agar plate are used to diagnose infection. On the left is a positive Staphylococcus infection, on the right a positive Streptococcus culture.

Blood agar[edit]

Hemolyses of Streptococcus spp. (left) α-hemolysis (S. mitis); (middle) β-hemolysis (S. pyogenes); (right) γ-hemolysis (= nonhemolytic, S. salivarius)

Blood agar plate[edit]

Blood agar plates (BAPs) contain mammalian blood (usually sheep or horse), typically at a concentration of 5–10%. BAPs are enriched, differential media used to isolate fastidious organisms and detect hemolytic activity. β-Hemolytic activity will show lysis and complete digestion of red blood cell contents surrounding a colony. Examples include Streptococcus haemolyticus. α-Hemolysis will only cause partial lysis of the red blood cells (the cell membrane is left intact) and will appear green or brown, due to the conversion of hemoglobin to methemoglobin. An example of this would be Streptococcus viridans. γ-Hemolysis (or nonhemolytic) is the term referring to a lack of hemolytic activity.[7] BAPs also contain meat extractoryeast extract, tryptone, sodium chloride, and agar.[8]

Chocolate agar[edit]

Chocolate agar is a type of blood agar plate in which the blood cells have been lysed by heating the cells to 80 °C. It is used for growing fastidious respiratory bacteria, such as Haemophilus influenzae. Chocolate agar is named for its color, and no chocolate is actually contained in the plate.

Thayer–Martin agar[edit]

Thayer–Martin agar is a chocolate agar designed to isolate Neisseria gonorrhoeae and Neisseria meningitidis.

Thiosulfate–citrate–bile salts–sucrose agar[edit]

Thiosulfate–citrate–bile salts–sucrose agar enhances growth of Vibrio spp., including Vibrio cholerae.[9]

General bacterial media[edit]

Four types of agar plate demonstrating differential growth depending on bacterial metabolism

Fungal media[edit]

Moss media[edit]

Yeast media[edit]

the yeast Candida albicans growing both as yeast cells and filamentous cells on YPD agar

Mega Plate[edit]

See also[edit]

Different specific types of agar:

References[edit]

  1. ^ a b Madigan M, Martinko J, eds. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.
  • ^ Sanders, Erin R. (11 May 2012). "Aseptic Laboratory Techniques: Plating Methods". Journal of Visualized Experiments (63): e3064. doi:10.3791/3064. PMC 4846335. PMID 22617405. Archived from the original on 14 November 2017. Retrieved 3 May 2018.
  • ^ "History of the agar plate". Laboratory News. Archived from the original on 11 February 2010. Retrieved 2010-02-22.
  • ^ Baron S; et al., eds. (1996). Baron's Medical Microbiology (4th ed.). University of Texas Medical Branch. ISBN 0-9631172-1-1. (via NCBI Bookshelf).
  • ^ Ryan KJ; Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9.
  • ^ "Indicator Plates". Retrieved 12 July 2018.
  • ^ "Blood Agar Plates and Hemolysis Protocols". Archived from the original on 2012-02-02. Retrieved 2014-10-28.
  • ^ "Blood Agar- Composition, Preparation, Uses and Pictures", Microbiology Info.com
  • ^ a b Fisher, Bruce; Harvey, Richard P.; Champe, Pamela C. (2007). Lippincott's Illustrated Reviews: Microbiology (Lippincott's Illustrated Reviews Series). Hagerstwon, MD: Lippincott Williams & Wilkins. ISBN 978-0-7817-8215-9.
  • ^ Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  • ^ Jung, Benjamin; Hoilat, Gilles J. (2022), "MacConkey Medium", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 32491326, retrieved 2022-12-12
  • ^ Reski, Ralf; Abel, Wolfgang O. (1985). "Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine". Planta. 165 (3): 354–358. doi:10.1007/bf00392232. PMID 24241140. S2CID 11363119.
  • ^ "A cinematic approach to drug resistance". Harvard Gazette. 2016-09-08. Retrieved 2021-04-08.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Agar_plate&oldid=1228318413"

    Categories: 
    Microbiological media
    Laboratory equipment
    Microbiology terms
    Microbiology equipment
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 10 June 2024, at 15:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki