Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Uses and properties  





3 Techniques of integration  





4 Of non-continuous functions  



4.1  Some examples  







5 Basic formulae  





6 See also  





7 Notes  





8 References  





9 Further reading  





10 External links  














Antiderivative






العربية
Azərbaycanca
Беларуская
Български
Català
Чӑвашла
Čeština
Dansk
Deutsch
Español
Esperanto
Euskara
فارسی
Français

Հայերեն
ि
Bahasa Indonesia
Íslenska
Italiano
עברית
Қазақша
Lietuvių
Lombard
Македонски
Nederlands

Norsk bokmål

Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Татарча / tatarça

Türkçe
Українська
اردو
Vèneto
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Antiderivatives)

The slope fieldof, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.

Incalculus, an antiderivative, inverse derivative, primitive function, primitive integralorindefinite integral[Note 1] of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f.[1][2] The process of solving for antiderivatives is called antidifferentiation (orindefinite integration), and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

Antiderivatives are related to definite integrals through the second fundamental theorem of calculus: the definite integral of a function over a closed interval where the function is Riemann integrable is equal to the difference between the values of an antiderivative evaluated at the endpoints of the interval.

Inphysics, antiderivatives arise in the context of rectilinear motion (e.g., in explaining the relationship between position, velocity and acceleration).[3] The discrete equivalent of the notion of antiderivative is antidifference.

Examples[edit]

The function is an antiderivative of , since the derivative of is. Since the derivative of a constantiszero, will have an infinite number of antiderivatives, such as , etc. Thus, all the antiderivatives of can be obtained by changing the value of cin, where c is an arbitrary constant known as the constant of integration. Essentially, the graphs of antiderivatives of a given function are vertical translations of each other, with each graph's vertical location depending upon the value c.

More generally, the power function has antiderivative ifn ≠ −1, and ifn = −1.

Inphysics, the integration of acceleration yields velocity plus a constant. The constant is the initial velocity term that would be lost upon taking the derivative of velocity, because the derivative of a constant term is zero. This same pattern applies to further integrations and derivatives of motion (position, velocity, acceleration, and so on).[3] Thus, integration produces the relations of acceleration, velocity and displacement:

Uses and properties[edit]

Antiderivatives can be used to compute definite integrals, using the fundamental theorem of calculus: if F is an antiderivative of the continuous function f over the interval , then:

Because of this, each of the infinitely many antiderivatives of a given function f may be called the "indefinite integral" of f and written using the integral symbol with no bounds:

IfF is an antiderivative of f, and the function f is defined on some interval, then every other antiderivative Goff differs from F by a constant: there exists a number c such that for all x. c is called the constant of integration. If the domain of F is a disjoint union of two or more (open) intervals, then a different constant of integration may be chosen for each of the intervals. For instance

is the most general antiderivative of on its natural domain

Every continuous function f has an antiderivative, and one antiderivative F is given by the definite integral of f with variable upper boundary: for any a in the domain of f. Varying the lower boundary produces other antiderivatives, but not necessarily all possible antiderivatives. This is another formulation of the fundamental theorem of calculus.

There are many functions whose antiderivatives, even though they exist, cannot be expressed in terms of elementary functions (like polynomials, exponential functions, logarithms, trigonometric functions, inverse trigonometric functions and their combinations). Examples of these are

  • the error function
  • the Fresnel function
  • the sine integral
  • the logarithmic integral function and
  • sophomore's dream
  • For a more detailed discussion, see also Differential Galois theory.

    Techniques of integration[edit]

    Finding antiderivatives of elementary functions is often considerably harder than finding their derivatives (indeed, there is no pre-defined method for computing indefinite integrals).[4] For some elementary functions, it is impossible to find an antiderivative in terms of other elementary functions. To learn more, see elementary functions and nonelementary integral.

    There exist many properties and techniques for finding antiderivatives. These include, among others:

    Computer algebra systems can be used to automate some or all of the work involved in the symbolic techniques above, which is particularly useful when the algebraic manipulations involved are very complex or lengthy. Integrals which have already been derived can be looked up in a table of integrals.

    Of non-continuous functions[edit]

    Non-continuous functions can have antiderivatives. While there are still open questions in this area, it is known that:

    Assuming that the domains of the functions are open intervals:

    Some examples[edit]

    1. The function

      with is not continuous at but has the antiderivative

      with . Since f is bounded on closed finite intervals and is only discontinuous at 0, the antiderivative F may be obtained by integration: .
    2. The function with is not continuous at but has the antiderivative with . Unlike Example 1, f(x) is unbounded in any interval containing 0, so the Riemann integral is undefined.
    3. Iff(x) is the function in Example 1 and F is its antiderivative, and is a dense countable subset of the open interval then the function has an antiderivative The set of discontinuities of g is precisely the set . Since g is bounded on closed finite intervals and the set of discontinuities has measure 0, the antiderivative G may be found by integration.
    4. Let be a dense countable subset of the open interval Consider the everywhere continuous strictly increasing function It can be shown that
      Figure 1.
      Figure 2.

      for all values x where the series converges, and that the graph of F(x) has vertical tangent lines at all other values of x. In particular the graph has vertical tangent lines at all points in the set .

      Moreover for all x where the derivative is defined. It follows that the inverse function is differentiable everywhere and that

      for all x in the set which is dense in the interval Thus g has an antiderivative G. On the other hand, it can not be true that

      since for any partition of , one can choose sample points for the Riemann sum from the set , giving a value of 0 for the sum. It follows that g has a set of discontinuities of positive Lebesgue measure. Figure 1 on the right shows an approximation to the graph of g(x) where and the series is truncated to 8 terms. Figure 2 shows the graph of an approximation to the antiderivative G(x), also truncated to 8 terms. On the other hand if the Riemann integral is replaced by the Lebesgue integral, then Fatou's lemma or the dominated convergence theorem shows that g does satisfy the fundamental theorem of calculus in that context.
    5. In Examples 3 and 4, the sets of discontinuities of the functions g are dense only in a finite open interval However, these examples can be easily modified so as to have sets of discontinuities which are dense on the entire real line . Let Then has a dense set of discontinuities on and has antiderivative
    6. Using a similar method as in Example 5, one can modify g in Example 4 so as to vanish at all rational numbers. If one uses a naive version of the Riemann integral defined as the limit of left-hand or right-hand Riemann sums over regular partitions, one will obtain that the integral of such a function g over an interval is 0 whenever a and b are both rational, instead of . Thus the fundamental theorem of calculus will fail spectacularly.
    7. A function which has an antiderivative may still fail to be Riemann integrable. The derivative of Volterra's function is an example.

    Basic formulae[edit]

    See also[edit]

    Notes[edit]

    1. ^ Antiderivatives are also called general integrals, and sometimes integrals. The latter term is generic, and refers not only to indefinite integrals (antiderivatives), but also to definite integrals. When the word integral is used without additional specification, the reader is supposed to deduce from the context whether it refers to a definite or indefinite integral. Some authors define the indefinite integral of a function as the set of its infinitely many possible antiderivatives. Others define it as an arbitrarily selected element of that set. This article adopts the latter approach. In English A-Level Mathematics textbooks one can find the term complete primitive - L. Bostock and S. Chandler (1978) Pure Mathematics 1; The solution of a differential equation including the arbitrary constant is called the general solution (or sometimes the complete primitive).

    References[edit]

    1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  • ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 978-0-547-16702-2.
  • ^ a b "4.9: Antiderivatives". Mathematics LibreTexts. 2017-04-27. Retrieved 2020-08-18.
  • ^ "Antiderivative and Indefinite Integration | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-08-18.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Antiderivative&oldid=1227280826"

    Categories: 
    Integral calculus
    Linear operators in calculus
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages using sidebar with the child parameter
    Articles with GND identifiers
     



    This page was last edited on 4 June 2024, at 20:21 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki