Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Background and instrumentation  





2 Observations and future research  





3 References  





4 External links  














Aquarius (SAC-D instrument)






Euskara
Bahasa Indonesia
Magyar
Bahasa Melayu
Nederlands
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Aquarius
Artist's concept of the SAC-D satellite
OperatorNASA
Instrument typeRadiometer
FunctionOceanography
Mission duration3 years
WebsiteAquarius Mission
Host spacecraft
SpacecraftSAC-D
OperatorCONAE
Launch dateJune 10, 2011
14:20 UTC
RocketDelta II
Launch siteVandenberg SLC-2W
OrbitLEO

Aquarius was a NASA instrument aboard the Argentine SAC-D spacecraft.[1] Its mission was to measure global sea surface salinity to better predict future climate conditions.[2]

Aquarius was shipped to Argentina on June 1, 2009 to be mounted in the INVAP built SAC-D satellite.[3] It came back to Vandenberg Air Force Base on March 31, 2011.[4]

For the joint mission, Argentina provided the SAC-D spacecraft and additional science instruments, while NASA provided the Aquarius salinity sensor and the rocket launch platform. The National Aeronautics and Space Administration (NASA)'s Jet Propulsion Laboratory in Pasadena, California, managed the Aquarius Mission development for NASA's Earth Science Enterprise based in Washington, D.C., and NASA's Goddard Spaceflight Center in Greenbelt, Maryland, is managing the mission after launch.[5]

The observatory was successfully launched from Vandenberg Air Force Base on June 10, 2011. After its launch aboard a Delta II from Vandenberg Air Force Base in California, SAC-D was carried into a 657 km (408 mi) Sun-synchronous orbit to begin its 3-year mission.[2]

On June 7, 2015, the SAC-D satellite carrying Aquarius suffered a power supply failure, ending the mission.[6]

Background and instrumentation[edit]

The spacecraft's mission is a joint program between the National Aeronautics and Space Administration (NASA) and Argentina's space agency, Comisión Nacional de Actividades Espaciales (CONAE). The Aquarius sensors are flown on the (now inoperative) Satélite de Applicaciones Científicas (SAC)-D spacecraft 657 kilometers (408 miles) above earth in a sun-synchronous, polar orbit that repeats itself once a week. Its instrument resolution was 150 kilometers (93 miles).

Aquarius objective was to provide insight into the effect of salt on the Earth's weather and climate systems by making the first space based observations of variations in salinity and creating global ocean salinity distribution maps. Data from the instrument will be able to show changes in the ocean's salinity on monthly, yearly and seasonal time scales.

Oceanographers use the Practical Salinity Scale (PSS) to measure salinity based on measurements of temperature, pressure and seawater conductivity and create a ratio. The PSS compares the conductivity ratio of a sample of seawater to a standard KCl solution. The oceanic average sea surface salinity is about 35 PSS (or 3.5% salt) and varies globally from 32 to 37 PSS. The Aquarius mission goal is to measure changes in salinity of 0.2 PSS.[7]

Aquarius measured sea surface salinity by using radiometers to detect changes in the oceans microwave thermal emissions frequencies due to salinity. Aquarius' three radiometers have antenna reflectors 2.5 meters (8.2 feet) in diameter that are able to scan a 390 kilometer (242 mile) wide swath of the ocean's surface collectively. The radiometers on Aquarius are the most accurate ever and were able to sense at a frequency of 1.4 GHz.[7]

Raw data records from the Aquarius instrument was transmitted from CONAE to the ground station at NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. The CONAE ground station is located in Córdoba, Argentina, where mission operations are conducted, data is processed and instrument operations are held. The processed data will create salinity related data products that will be archived for use by NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) in Pasadena, CA's Jet Propulsion Laboratory (JPL).

Observations and future research[edit]

Ocean Salinity Map developed with Aquarius' first light data
The NASA Aquarius instrument aboard Argentina's SAC-D satellite is designed to measure global sea surface salinity. This movie shows salinity patterns as measured by Aquarius from December 2011 through December 2012. Red colors represent areas of high salinity, while blue shades represent areas of low salinity. It is important to understand salinity, the amount of dissolved salts in water, because it will lead us to better understanding of the water cycle and can lead to improved climate models. High concentrations (over 37 practical salinity units) are usually in the center of the ocean basins away from the mouths of rivers, which input fresh water. High concentrations are also in sub-tropical regions due to high rates of evaporation (clear skies, little rain, and prevailing winds) and in landlocked seas in arid regions. At high latitudes, salinity is low. This can be attributed to lower evaporation rates and the melting of ice that dilutes seawater. To sum up, salinity is low where precipitation is greater than evaporation, mainly in coastal or equatorial regions. Credit: NASA/GSFC/JPL-Caltech

After less than one month in operation, Aquarius produced the first map showing the varying degrees of salinity across the ocean's surface produced by NASA.[8] The first salinity maps from space were provided by the European Space Agency satellite SMOS (Soil Moisture and Ocean Salinity) that was launched in November 2009.[9] Previous satellites enabled measurement of ocean currents, sea surface temperature and winds, and ocean color. Aquarius adds the ability to measure another ocean variable – the salt content. Measuring sea surface salinity (SSS) will supplement other satellite observations of the global water cycle: precipitation, evaporation, soil moisture, atmospheric water vapor, and sea ice extent.[10]

In the past, salinity measurements have been taken using instruments in buoys and on ships, however the measurements are inconsistent and don't provide accurate data over large temporal and spatial regions. Aquarius' ability to consistently map the oceans enables scientists to create more advanced computer models to study sea surface salinity and potentially forecast future climate conditions.

References[edit]

Public Domain This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

  1. ^ "Aquarius/SAC-D Instruments". CONAE. Archived from the original on March 26, 2009. Retrieved January 6, 2010.
  • ^ a b NASA Goddard Space Flight Center (June 1, 2009). "Aquarius Mission Overview". NASA. Archived from the original on June 5, 2009. Retrieved June 2, 2009.
  • ^ NASA JPL (June 1, 2009). "Salt-seeking ocean sensor to ship south". NASA. Archived from the original on June 4, 2009. Retrieved June 2, 2009.
  • ^ "Aquarius Space Craft Return to US". NASA. March 31, 2011. Archived from the original on May 18, 2011. Retrieved May 11, 2011.
  • ^ "Aquarius / SAC-D Satellite Mission". Earth & Space Research (ESR). Archived from the original on April 26, 2009. Retrieved October 5, 2011.
  • ^ "Aquarius end of mission announcement". Gary Lagerloef and Sandra Torrusio. Archived from the original on March 13, 2017. Retrieved August 24, 2015.
  • ^ a b "Aquarius / SAC-D Sea Surface Salinity from Space" (PDF). Retrieved November 22, 2013.
  • ^ "Aquarius Yields NASA's First Global Map of Ocean Salinity". NASA. September 22, 2011. Retrieved October 5, 2011.
  • ^ "ESA - Living Planet Programme - SMOS - ESA's water mission SMOS". Retrieved December 6, 2011.
  • ^ "Overview: Benefits". Aquarius. NASA. September 23, 2011. Archived from the original on October 17, 2011. Retrieved October 5, 2011.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Aquarius_(SAC-D_instrument)&oldid=1191272124"

    Categories: 
    Oceanography
    Earth observation satellite sensors
    Space programme of Argentina
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use mdy dates from September 2021
    Wikipedia articles incorporating text from NASA
    Use American English from January 2014
    All Wikipedia articles written in American English
    Articles containing video clips
     



    This page was last edited on 22 December 2023, at 14:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki