Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Purposes  





2 Classes  



2.1  Class I  





2.2  Class II  





2.3  Class III  







3 Ergonomics  





4 Ultraviolet lamps  





5 Maintenance and service  





6 Work practices  





7 See also  





8 References  














Biosafety cabinet






العربية
Català
Español
Français

Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Biosafety cabinet

A microbiologist performing influenza research within a biosafety cabinet

Acronym

BSC

Other names

Biological safety cabinet, microbiological safety cabinet

Uses

Biocontainment

Related items

Laminar flow cabinet
Fume hood
Glove box

Abiosafety cabinet (BSC)—also called a biological safety cabinetormicrobiological safety cabinet—is an enclosed, ventilated laboratory workspace for safely working with materials contaminated with (or potentially contaminated with) pathogens requiring a defined biosafety level. Several different types of BSC exist, differentiated by the degree of biocontainment they provide. BSCs first became commercially available in 1950.[1]

Purposes[edit]

The primary purpose of a BSC is to serve as a means to protect the laboratory worker and the surrounding environment from pathogens. All exhaust air is HEPA-filtered as it exits the biosafety cabinet, removing harmful bacteria and viruses.[2] This is in contrast to a laminar flow clean bench, which blows unfiltered exhaust air towards the user and is not safe for work with pathogenic agents.[3]: 13 [4] Neither are most BSCs safe for use as fume hoods.[2] Likewise, a fume hood fails to provide the environmental protection that HEPA filtration in a BSC would provide.[5] However, most classes of BSCs have a secondary purpose to maintain the sterility of materials inside (the "product").

Classes[edit]

The U.S. Centers for Disease Control and Prevention (CDC) classifies BSCs into three classes.[3]: 6  These classes and the types of BSCs within them are distinguished in two ways: the level of personnel and environmental protection provided and the level of product protection provided.[6]

Class I[edit]

Class I cabinets provide personnel and environmental protection but no product protection. In fact, the inward flow of air can contribute to contamination of samples.[7] Inward airflow is maintained at a minimum velocity of 75 ft/min(0.38 m/s). These BSCs are commonly used to enclose specific equipment (e.g. centrifuges) or procedures (e.g. aerating cultures) that potentially generate aerosols. BSCs of this class are either ducted (connected to the building exhaust system) or unducted (recirculating filtered exhaust back into the laboratory).[3]: 6 

Class II[edit]

Class II cabinets provide both kinds of protection (of the samples and of the environment) since makeup air is also HEPA-filtered. There are five types: Type A1 (formerly A), Type A2 (formerly A/B3), Type B1, Type B2 and Type C1. Each type's requirements are defined by NSF International Standard 49,[3]: 31  which in 2002 reclassified A/B3 cabinets (classified under the latter type if connected to an exhaust duct) as Type A2,[5] and added the Type C1 in the 2016 standard.[8] About 90% of all biosafety cabinets installed are Type A2 cabinets.[7]

Principles of operation use motor driven blowers (fans) mounted in the cabinet to draw directional mass airflow around a user and into the air grille - protecting the operator. The air is then drawn underneath the work surface and back up to the top of the cabinet where it passes through the HEPA filters. A column of HEPA filtered, sterile air is also blown downward, over products and processes to prevent contamination. Air is also exhausted through a HEPA filter, and depending on the Type of Class II BSC, the air is either recirculated back into the laboratory or pulled by an exhaust fan, through ductwork where it is expelled from the building.[9]

Class II Biosafety Cabinet Types using color to illustrate where it is safe to handle hazardous chemistry with microbiology. (Blue is recirculated air where it is NOT safe to use hazardous chemistry. Red is single pass air and is safe for chemical use. Purple is uncertainty due to location of the BSCs smoke-split)

The Type A1 cabinet, formerly known as Type A, has a minimum inflow velocity of 75 ft/min. The downflow air, considered contaminated, splits just above the work surface (the BSCs smoke split) and mixes with the inflow. This air is drawn, through ductwork, up the back of the cabinet where it is then blown into a positive pressure, contaminated plenum. Here, the air is either recirculated, through a HEPA filter, back down over the work zone, or exhausted out of the cabinet (also through a HEPA filter). Sizing of HEPA filters and an internal damper are used to balance these air volumes. This type is not safe for work with hazardous chemicals even when exhausted with a "thimble" or canopy to avoid disturbing internal air flow.[3]: 8–9 

The Type A2 cabinet, formerly designated A/B3, has a minimum inflow velocity of 100 ft/min. A negative air pressure plenum surrounds all contaminated positive pressure plenums. In other respects, the specifications are identical to those of a Type A1 cabinet.[3]: 9–11 [5]

Type B1 and B2 cabinets have a minimum inflow velocity of 100 ft/min, and these cabinets must be hard-ducted to an exhaust system rather than exhausted through a thimble connection. Their exhaust systems must also be dedicated (one BSC per duct run, per blower). In contrast to the type A1 and A2 cabinets, Type B BSCs use single pass airflow (air that does not mix and recirculate) in order to also control hazardous chemical vapors. Type B1 cabinets split the airflow so that the air behind the smoke-split is directed to the exhaust system, while air between the operator and the smoke-split mixes with inflow air and is recirculated as downflow. Since exhaust air is drawn from the rear grille, the CDC advises that work with hazardous chemistry be conducted in the rear of the cabinet.[3]: 10  This is complicated, since the smoke split (demarking the "rear of the cabinet") is an invisible line that extends the width of the cabinet (approximately 10-14 inches from the front grille) and drifts as the internal HEPA filters load with particulate.[9]

The Type B2 cabinet (also known as a Total Exhaust BSC) is expensive to operate because no air is recirculated within.[3] Therefore, this type is mainly found in such applications as toxicology laboratories, where the ability to safely use hazardous chemistry is important.[5] Additionally, there is the risk that contaminated air would flow into the laboratory if the exhaust system for a Type B1 or B2 cabinet were to fail. To mitigate this risk, cabinets of these types generally monitor the exhaust flow, shutting off the supply blower and sounding an alarm if the exhaust flow is insufficient.

Class III[edit]

A researcher observing a specimen through the built-in microscope in a Class III biosafety cabinet
Aerosol control platform inside a Class III Biosafety Cabinet

The Class III cabinet, generally only installed in maximum containment laboratories, is specifically designed for work with BSL-4 pathogenic agents, providing maximum protection. The enclosure is gas-tight, and all materials enter and leave through a dunk tank or double-door autoclave. Gloves attached to the front prevent direct contact with hazardous materials (Class III cabinets are sometimes called glove boxes). These custom-built cabinets often attach into a line, and the lab equipment installed inside is usually custom-built as well.[3]: 12–13 

Ergonomics[edit]

Biosafety cabinets are used on a daily basis for hours. Besides protection of user and sample material, the human design factors (ergonomics) of the work become more and more important. This includes reduction of the noise level (for a more convenient working atmosphere), a height adjustable stand or stool and footrest (for optimized sitting position), panorama side windows (more light within cabinet), 10° angled front sash (enables better sitting position), strong light sources (better view within cabinet), forearm support for comfort and safety, as well as extended access openings and sloped viewing windows to improve the working conditions.[10]

Ultraviolet lamps[edit]

The CDC does not recommend the installation of UV lamps in BSCs.[3]: 12–13  The American Biological Safety Association supports this position, citing the safety risk to personnel, shallow penetration, reduced effectiveness in high relative humidity, and the frequent need to clean and replace the bulb.[11] UV lamps should not be used as a primary source of surface decontamination within a BSC.[12] However, these assertions have been formally disputed in at least one peer-reviewed article which points out that:[13]

Maintenance and service[edit]

Biological safety cabinets are generally required to comply with that country or region's standards. This requirement may be governed by an institutional body such as the TGA, FDA or WHO. Within Australia, for example, Class II BSCs are required to meet construction standards entitled AS2252.2. Those standards reference several other standards, such as AS2243.3. AS2243.3 classifies the level of risk that microorganisms pose based on their pathogenicity, mode of transmission, and host range, along with current preventative measures and effective treatments.[14]

There are specific field test requirements for class II BSC's. The United States' base for field testing is NSF49; Europe relies on EN12469; and Australia has the AS1807 series of test methods (referenced within AS2252.2).[15] The field test requirements may include:

In general terms, a regular service maintenance schedule may include the following tasks:

Work practices[edit]

As with work on open bench tops, work performed within a BSC must be performed carefully and safely. To avoid contamination and the risk of personnel exposure, the CDC advises investigators to follow best practices to reduce and control splatter and aerosol generation, such as keeping clean materials at least 12 inches (30 cm) from aerosol-generating activities and arranging the work flow "from clean to contaminated".[3]: 22  In particular, open flames, not necessary within the clean environment of a Class II or III BSC, cause disruption of the airflow inside.[3]: 22  Once work inside a BSC has been completed, it is necessary to decontaminate the surfaces of the BSC as with other lab equipment and materials.[3]: 24 

When a BSC is serviced or relocated, including replacement of HEPA filters, it must be gas decontaminated. Gas decontamination involves filling the BSC with a poisonous gas, most commonly formaldehyde.[3]: 25 

See also[edit]

References[edit]

  1. ^ Wedum, A.G. (1969), "The Detrick experience as a guide to the probable efficacy of P4 microbiological containment facilities for studies on microbial recombinant DNA molecules"; J Am Biol Safety Assoc;1:7-25.
  • ^ a b Iowa State University (2005). "Biosafety Cabinets". Retrieved April 24, 2010.
  • ^ a b c d e f g h i j k l m n U.S. Centers for Disease Control and Prevention; U.S. National Institutes of Health (2000). Primary Containment for Biohazards: Selection, Installation and Use of Biological Safety Cabinets (PDF). U.S. Centers for Disease Control and Prevention.
  • ^ University of Pennsylvania (November 6, 2009). "Clean Benches vs. Biosafety Cabinets". Archived from the original on June 11, 2010. Retrieved April 24, 2010.
  • ^ a b c d The Baker Company (2010). "Introduction to Biological Safety Cabinets". Archived from the original on July 26, 2020. Retrieved April 26, 2010.
  • ^ "Biosafety Cabinet Classes - NuAire". www.nuaire.com. Retrieved 2021-02-22.
  • ^ a b DePalma, Angelo (October 7, 2009). "Product Focus: Biological Safety Cabinets". Lab Manager. Retrieved April 26, 2010.
  • ^ "3 Takeaways from the 2016 NSF/ANSI Standard 49 update - Labconco". www.labconco.com. Retrieved 2017-05-30.
  • ^ a b "Biosafety Cabinet No-Brainer - Labconco". www.labconco.com. Retrieved 2017-05-30.
  • ^ "Biosafety Cabinet Ergonomics - NuAire". www.nuaire.com. Retrieved 2021-05-25.
  • ^ American Biological Safety Association (December 2000). "Position Paper on the Use of Ultraviolet Lights in Biological Safety Cabinets" (PDF). Archived from the original (PDF) on October 11, 2010. Retrieved April 26, 2010.
  • ^ "Biosafety in Microbiological and Biomedical Laboratories" (PDF).
  • ^ Meechan, Paul; Christina Wilson (2006). "Use of Ultraviolet Lights in Biological Safety Cabinets: A Contrarian View". Applied Biosafety. 11 (4): 222–227. doi:10.1177/153567600601100412. S2CID 7219366.
  • ^ AS2252.2-2009 Part-II Biological Safety Cabinets Class II - Design, Standards Australia, 2009, Sydney.
  • ^ "AES Environmental". AES Environmental. Archived from the original on 21 March 2019.
  • General

    • Heaters
  • Dryers
  • Bunsen burner
  • Desiccator
  • Heating mantle
  • Hot plate
  • Lab oven
  • Kiln
  • Meker–Fisher burner
  • Striker
  • Teclu burner
  • Water bath
  • Vacuum dry box
    • Mixers
  • Shakers
  • Homogenizer
  • Liquid whistle
  • Magnetic stirrer
  • Mortar and pestle
  • Shaker
  • Sonicator
  • Static mixer
  • Stirring rod
  • Vortex mixer
  • Wash bottle
    • Stands
  • Clamps
  • Holders
    • Beaker clamp
  • Clamp holder
  • Tripod
  • Burette clamp
  • Extension clamp
  • Flask clamp
  • Funnel support
  • Iron ring
  • Pinch clamp
  • Retort stand
  • Screw clamp
  • Test tube holder
  • Test tube rack
  • Wire gauze
  • Lab drying rack
    • Containers
  • Storage
  • Cryogenic storage dewar
  • Incubator
  • Laminar flow cabinet
  • Microtiter plate
  • Petri dish
  • Picotiter plate
  • Refrigerator
  • Weighing boat
  • Weighing dish
  • Other items

  • Autoclave
  • Balance brush
  • Cork borer
  • Crucible
  • Filter paper
  • File
  • Forceps
  • Centrifuge
  • Microscope
  • Pipeclay triangle
  • Spectrophotometer
  • Splint
  • Stopper
  • Scoopula
  • Spatula
  • Test tube brush
  • Wire brush
  • Inoculation needle
  • Inoculation loop
  • Apparatus

  • Soxhlet extractor
  • Kipp's
  • Bottles

    Condensers

  • Liebig
  • Dishes

  • Petri
  • Syracuse
  • Watch glass
  • Flasks

  • Vacuum (Dewar)
  • Erlenmeyer
  • Fernbach
  • Fleaker
  • Florence
  • Retort
  • Round-bottom
  • Schlenk
  • Volumetric
  • Funnels

  • Hirsch
  • Dropping
  • Separatory
  • Measuring devices

  • Conical measure
  • Cuvette
  • Eye dropper
  • Eudiometer
  • Graduated cylinder
  • Ostwald viscometer
  • Pipette
  • Tubes

  • Cragie
  • Nuclear magnetic resonance (NMR)
  • Test
  • Thiele
  • Thistle
  • Other items

  • Bell jar
  • Gas syringe
  • Vial
  • Compositional

  • CHN analyzer
  • Colorimeter
  • Inductively coupled plasma (ICP) device
  • Gas chromatograph (GC)
  • Liquid chromatograph (LC)
  • Mass spectrometer (MS)
  • pH indicator
  • pH meter
  • Microscopy

  • Transmission electron microscope (TEM)
  • Thermochemistry

  • Melting-point apparatus
  • Thermometer
  • Thermogravimetric analyzer (TGA)
  • Other items

  • Colony counter
  • Spiral plater
  • Nuclear magnetic resonance (NMR) instrument
  • Plate reader
  • Control devices

  • Voltage source
  • Function generator
  • Galvanostat
  • Pulse generator
  • Potentiostat
  • Measurement

  • Logic analyzer
  • Multimeter
  • Network analyzer
  • Oscilloscope
  • Spectrum analyzer
  • Time-domain reflectometer
  • Transistor tester
  • Voltmeter
  • Tools

  • Soldering iron
  • Tweezers
  • Wire stripper
  • General

  • Test probe
  • Safety

  • Rubber apron
  • Safety shower
  • Eye and hand

  • Eyewash station
  • Glove box
  • Medical gloves
  • Nitrile gloves
  • Safety glasses
  • Safety goggles
  • Other items

  • Fire blanket
  • Fire extinguisher
  • Fume hood
  • Safety cabinet
  • Solvent cabinet
  • Instruments used in medical laboratories

    Techniques in clinical microbiology

    Isolation
    and culture

    Isolation techniques

  • Streak plate
  • Selective media
  • Cultures by body site

  • Genital culture
  • Sputum culture
  • Throat culture
  • Urine culture
  • Wound culture
  • Cultures by organism

  • Fungal culture
  • Viral culture
  • Identification
    and testing

    Manual testing: basic techniques

  • Staining
  • Wet prep
  • Rapid tests
  • Manual testing:
    biochemical and immunologic tests

  • Amino acid decarboxylase test
  • Bile solubility test
  • CAMP test
  • Citrate test
  • Coagulase test
  • DNAse test
  • IMViC
  • KOH test
  • Methyl red test
  • Nitrite test
  • ONPG test
  • Oxidative/fermentation glucose test
  • Phenylalanine deaminase test
  • Reverse CAMP test
  • Salt tolerance test
  • Sulfide indole motility test
  • Triple sugar iron test
  • Urease test
  • Voges–Proskauer test
  • X and V factor test
  • Bacitracin susceptibility test
  • Optochin susceptibility test
  • Novobiocin susceptibility test
  • Lancefield grouping
  • RPR test
  • Automated and point-of-care testing

  • MALDI-TOF
  • Polymerase chain reaction
  • VITEK
  • Rapid strep test
  • Monospot test
  • Antibiotic susceptibility testing

  • Disk diffusion test
  • Etest
  • McFarland standards
  • Minimum inhibitory concentration
  • Equipment

  • Anaerobic jar
  • Durham tube
  • Biosafety cabinet
  • Incubator
  • Inoculation loop
  • Inoculation needle

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Biosafety_cabinet&oldid=1231948626"

    Categories: 
    Biological hazards
    Molecular biology laboratory equipment
    Safety equipment
    Ventilation
    Laboratory equipment
    Microbiology equipment
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 1 July 2024, at 03:54 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki