Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Operation  



1.1  Steady state  





1.2  Well-mixed  





1.3  Dilution rate  





1.4  Maximal growth rate and critical dilution rate  







2 Applications  



2.1  Research  





2.2  Industry  







3 Technical concerns  





4 Experimental design considerations  



4.1  Parameter choice and setup  





4.2  Steady state growth  





4.3  Mutation  





4.4  Single takeover  





4.5  Successive takeovers  







5 Variations  





6 See also  





7 References  





8 External links  














Chemostat






العربية
Català
Čeština
Deutsch
Español
Euskara
فارسی
Français
Italiano
Português
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Chemostat

Chemostat schematic
A chemostat diagram featuring inflow (feed) and outflow (effluent).

Industry

Biological engineering

Application

Research and Industry

Enclosed chemostat vessel with a continuous and adjustable inflow of medium and outflow of effluent, used for controlled growth of microorganisms. The system maintains a constant volume and level of aeration. The growth rate of the microorganism is controlled by manipulation of the inflow of fresh medium, while the population density is regulated through changing the concentration of the limiting nutrient. This open system allows researchers to maintain the exponential growth phase of cells for use in physiological experiments.[1]

Achemostat (from chemical environment is static) is a bioreactor to which fresh medium is continuously added, while culture liquid containing left over nutrients, metabolic end products and microorganisms is continuously removed at the same rate to keep the culture volume constant.[2][3] By changing the rate with which medium is added to the bioreactor the specific growth rate of the microorganism can be easily controlled within limits.

Operation[edit]

Steady state[edit]

One of the most important features of chemostats is that microorganisms can be grown in a physiological steady state under constant environmental conditions. In this steady state, growth occurs at a constant specific growth rate and all culture parameters remain constant (culture volume, dissolved oxygen concentration, nutrient and product concentrations, pH, cell density, etc.). In addition, environmental conditions can be controlled by the experimenter.[4] Microorganisms growing in chemostats usually reach a steady state because of a negative feedback between growth rate and nutrient consumption: if a low number of cells are present in the bioreactor, the cells can grow at growth rates higher than the dilution rate as they consume little nutrient so growth is less limited by the addition of limiting nutrient with the inflowing fresh medium. The limiting nutrient is a nutrient essential for growth, present in the medium at a limiting concentration (all other nutrients are usually supplied in surplus). However, the higher the number of cells becomes, the more nutrient is consumed, lowering the concentration of the limiting nutrient. In turn, this will reduce the specific growth rate of the cells, which will lead to a decline in the number of cells as they keep being removed from the system with the outflow. This results in a steady state. Due to self-regulation, the steady state is stable. This enables the experimenter to control the specific growth rate of the microorganisms by changing the speed of the pump feeding fresh medium into the vessel.

Well-mixed[edit]

Another important feature of chemostats and other continuous culture systems is that they are well-mixed so that environmental conditions are homogenous or uniform and microorganisms are randomly dispersed and encounter each other randomly. Therefore, competition and other interactions in the chemostat are global, in contrast to biofilms.

Dilution rate[edit]

The rate of nutrient exchange is expressed as the dilution rate D. At steady state, the specific growth rate μ of the micro-organism is equal to the dilution rate D. The dilution rate is defined as the flow of medium per unit of time, F, over the volume V of culture in the bioreactor

Maximal growth rate and critical dilution rate[edit]

Specific growth rate μ is inversely related to the time it takes the biomass to double, called doubling time td, by:

Therefore, the doubling time td becomes a function of dilution rate D in steady state:

Each microorganism growing on a particular substrate has a maximal specific growth rate μmax (the rate of growth observed if growth is limited by internal constraints rather than external nutrients). If a dilution rate is chosen that is higher than μmax, the cells cannot grow at a rate as fast as the rate with which they are being removed so the culture will not be able to sustain itself in the bioreactor, and will wash out.

However, since the concentration of the limiting nutrient in the chemostat cannot exceed the concentration in the feed, the specific growth rate that the cells can reach in the chemostat is usually slightly lower than the maximal specific growth rate because specific growth rate usually increases with nutrient concentration as described by the kinetics of the Monod equation. [citation needed] The highest specific growth' rates (μmax) cells can attain is equal to the critical dilution rate (D'c):

where S is the substrate or nutrient concentration in the chemostat and KS is the half-saturation constant (this equation assumes Monod kinetics).

Applications[edit]

Research[edit]

Chemostats in research are used for investigations in cell biology, as a source for large volumes of uniform cells or protein. The chemostat is often used to gather steady state data about an organism in order to generate a mathematical model relating to its metabolic processes. Chemostats are also used as microcosms in ecology[5][6] and evolutionary biology.[7][8][9][10] In the one case, mutation/selection is a nuisance, in the other case, it is the desired process under study. Chemostats can also be used to enrich for specific types of bacterial mutants in culture such as auxotrophs or those that are resistant to antibioticsorbacteriophages for further scientific study.[11] Variations in the dilution rate permit the study of the metabolic strategies pursued by the organisms at different growth rates.[12][13]

Competition for single and multiple resources, the evolution of resource acquisition and utilization pathways, cross-feeding/symbiosis,[14][15] antagonism, predation, and competition among predators have all been studied in ecology and evolutionary biology using chemostats.[16][17][18]

Industry[edit]

Chemostats are frequently used in the industrial manufacturing of ethanol. In this case, several chemostats are used in series, each maintained at decreasing sugar concentrations.[citation needed] The chemostat also serves as an experimental model of continuous cell cultures in the biotechnological industry.[13]

Technical concerns[edit]

Continuous efforts to remedy each defect lead to variations on the basic chemostat quite regularly. Examples in the literature are numerous.

Experimental design considerations[edit]

This section relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this articlebyintroducing citations to additional sources.
Find sources: "Chemostat" – news · newspapers · books · scholar · JSTOR
(December 2019)

Parameter choice and setup[edit]

[23]

Steady state growth[edit]

[23]

Mutation[edit]

[23]

Single takeover[edit]

[23]

Successive takeovers[edit]

[23]

Variations[edit]

Fermentation setups closely related to the chemostats are the turbidostat, the auxostat and the retentostat. In retentostats, culture liquid is also removed from the bioreactor, but a filter retains the biomass. In this case, the biomass concentration increases until the nutrient requirement for biomass maintenance has become equal to the amount of limiting nutrient that can be consumed.

See also[edit]

References[edit]

  1. ^ Madigan, Michael (2015). Brock Biology of Microorganisms. Pearson. pp. 152–153. ISBN 978-0-321-89739-8.
  • ^ Novick A, Szilard L (1950). "Description of the Chemostat". Science. 112 (2920): 715–6. Bibcode:1950Sci...112..715N. doi:10.1126/science.112.2920.715. PMID 14787503.
  • ^ James TW (1961). "Continuous Culture of Microorganisms". Annual Review of Microbiology. 15: 27–46. doi:10.1146/annurev.mi.15.100161.000331.
  • ^ D Herbert; R Elsworth; RC Telling (1956). "The continuous culture of bacteria; a theoretical and experimental study". J. Gen. Microbiol. 14 (3): 601–622. doi:10.1099/00221287-14-3-601. PMID 13346021.
  • ^ Becks L, Hilker FM, Malchow H, Jürgens K, Arndt H (2005). "Experimental demonstration of chaos in a microbial food web". Nature. 435 (7046): 1226–9. Bibcode:2005Natur.435.1226B. doi:10.1038/nature03627. PMID 15988524. S2CID 4380653.
  • ^ Pavlou S, Kevrekidis IG (1992). "Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies". Math Biosci. 108 (1): 1–55. doi:10.1016/0025-5564(92)90002-E. PMID 1550993.
  • ^ Wichman HA, Millstein J, Bull JJ (2005). "Adaptive Molecular Evolution for 13,000 Phage Generations: A Possible Arms Race". Genetics. 170 (1): 19–31. doi:10.1534/genetics.104.034488. PMC 1449705. PMID 15687276.
  • ^ Dykhuizen DE, Dean AM (2004). "Evolution of specialists in an experimental microcosm". Genetics. 167 (4): 2015–26. doi:10.1534/genetics.103.025205. PMC 1470984. PMID 15342537.
  • ^ Wick LM, Weilenmann H, Egli T (2002). "The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics". Microbiology. 148 (Pt 9): 2889–902. doi:10.1099/00221287-148-9-2889. PMID 12213934.
  • ^ Jones LE, Ellner SP (2007). "Effects of rapid prey evolution on predator-prey cycles". J Math Biol. 55 (4): 541–73. arXiv:q-bio/0609032. doi:10.1007/s00285-007-0094-6. PMID 17483952. S2CID 16927689.
  • ^ Schlegel HG, Jannasch HW (1967). "Enrichment cultures". Annu. Rev. Microbiol. 21: 49–70. doi:10.1146/annurev.mi.21.100167.000405. PMID 4860267.
  • ^ Varma, A.; Palsson, B. O. (1994-10-01). "Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110". Applied and Environmental Microbiology. 60 (10): 3724–3731. Bibcode:1994ApEnM..60.3724V. doi:10.1128/aem.60.10.3724-3731.1994. ISSN 0099-2240. PMC 201879. PMID 7986045.
  • ^ a b Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto (2017-11-13). "Characterizing steady states of genome-scale metabolic networks in continuous cell cultures". PLOS Computational Biology. 13 (11): e1005835. arXiv:1705.09708. Bibcode:2017PLSCB..13E5835F. doi:10.1371/journal.pcbi.1005835. ISSN 1553-7358. PMC 5703580. PMID 29131817.
  • ^ Daughton CG, Hsieh DP (1977). "Parathion utilization by bacterial symbionts in a chemostat". Appl. Environ. Microbiol. 34 (2): 175–84. Bibcode:1977ApEnM..34..175D. doi:10.1128/aem.34.2.175-184.1977. PMC 242618. PMID 410368.
  • ^ Pfeiffer T, Bonhoeffer S (2004). "Evolution of cross-feeding in microbial populations". Am. Nat. 163 (6): E126–35. doi:10.1086/383593. PMID 15266392. S2CID 31110741.
  • ^ G. J. Butler; G. S. K. Wolkowicz (July 1986). "Predator-mediated competition in the chemostat". J Math Biol. 24 (2): 67–191. doi:10.1007/BF00275997. S2CID 120858390.
  • ^ Dykhuizen DE, Hartl DL (June 1983). "Selection in chemostats". Microbiol. Rev. 47 (2): 150–68. doi:10.1128/mr.47.2.150-168.1983. PMC 281569. PMID 6308409.
  • ^ Dykhuizen DE, Hartl DL (May 1981). "Evolution of Competitive Ability in Escherichia coli". Evolution. 35 (3): 581–94. doi:10.2307/2408204. JSTOR 2408204. PMID 28563589.
  • ^ Bonomi A, Fredrickson AG (1976). "Protozoan feeding and bacterial wall growth". Biotechnol. Bioeng. 18 (2): 239–52. doi:10.1002/bit.260180209. PMID 1267931. S2CID 41343643.
  • ^ de Crécy E, Metzgar D, Allen C, Pénicaud M, Lyons B, Hansen CJ, de Crécy-Lagard V (2007). "Development of a novel continuous culture device for experimental evolution of bacterial populations". Appl. Microbiol. Biotechnol. 77 (2): 489–96. doi:10.1007/s00253-007-1168-5. PMID 17896105. S2CID 25787277.
  • ^ Zhang Z, Boccazzi P, Choi HG, Perozziello G, Sinskey AJ, Jensen KF (2006). "Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor". Lab Chip. 6 (7): 906–13. doi:10.1039/b518396k. PMID 16804595.
  • ^ Van Hulle SW, Van Den Broeck S, Maertens J, Villez K, Schelstraete G, Volcke EI, Vanrolleghem PA (2003). "Practical experiences with start-up and operation of a continuously aerated lab-scale SHARON reactor". Commun. Agric. Appl. Biol. Sci. 68 (2 Pt A): 77–84. PMID 15296140.
  • ^ a b c d e Wides A, Milo R (2018). "Understanding the Dynamics and Optimizing the Performance of Chemostat Selection Experiments". arXiv:1806.00272 [q-bio.PE].
  • External links[edit]

    1. http://www.pererikstrandberg.se/examensarbete/chemostat.pdf
    2. https://web.archive.org/web/20060504172359/http://www.rpi.edu/dept/chem-eng/Biotech-Environ/Contin/chemosta.htm
    3. A final thesis including mathematical models of the chemostat and other bioreactors
    4. A page about one laboratory chemostat design
    5. Comprehensive chemostat manual (Dunham lab). Procedures and principles are general.

    General

    • Heaters
  • Dryers
  • Bunsen burner
  • Desiccator
  • Heating mantle
  • Hot plate
  • Lab oven
  • Kiln
  • Meker–Fisher burner
  • Striker
  • Teclu burner
  • Water bath
  • Vacuum dry box
    • Mixers
  • Shakers
  • Homogenizer
  • Liquid whistle
  • Magnetic stirrer
  • Mortar and pestle
  • Shaker
  • Sonicator
  • Static mixer
  • Stirring rod
  • Vortex mixer
  • Wash bottle
    • Stands
  • Clamps
  • Holders
    • Beaker clamp
  • Clamp holder
  • Tripod
  • Burette clamp
  • Extension clamp
  • Flask clamp
  • Funnel support
  • Iron ring
  • Pinch clamp
  • Retort stand
  • Screw clamp
  • Test tube holder
  • Test tube rack
  • Wire gauze
  • Lab drying rack
    • Containers
  • Storage
  • Cryogenic storage dewar
  • Incubator
  • Laminar flow cabinet
  • Microtiter plate
  • Petri dish
  • Picotiter plate
  • Refrigerator
  • Weighing boat
  • Weighing dish
  • Other items

  • Autoclave
  • Balance brush
  • Cork borer
  • Crucible
  • Filter paper
  • File
  • Forceps
  • Centrifuge
  • Microscope
  • Pipeclay triangle
  • Spectrophotometer
  • Splint
  • Stopper
  • Scoopula
  • Spatula
  • Test tube brush
  • Wire brush
  • Inoculation needle
  • Inoculation loop
  • Apparatus

  • Soxhlet extractor
  • Kipp's
  • Bottles

    Condensers

  • Liebig
  • Dishes

  • Petri
  • Syracuse
  • Watch glass
  • Flasks

  • Vacuum (Dewar)
  • Erlenmeyer
  • Fernbach
  • Fleaker
  • Florence
  • Retort
  • Round-bottom
  • Schlenk
  • Volumetric
  • Funnels

  • Hirsch
  • Dropping
  • Separatory
  • Measuring devices

  • Conical measure
  • Cuvette
  • Eye dropper
  • Eudiometer
  • Graduated cylinder
  • Ostwald viscometer
  • Pipette
  • Tubes

  • Cragie
  • Nuclear magnetic resonance (NMR)
  • Test
  • Thiele
  • Thistle
  • Other items

  • Bell jar
  • Gas syringe
  • Vial
  • Compositional

  • CHN analyzer
  • Colorimeter
  • Inductively coupled plasma (ICP) device
  • Gas chromatograph (GC)
  • Liquid chromatograph (LC)
  • Mass spectrometer (MS)
  • pH indicator
  • pH meter
  • Microscopy

  • Transmission electron microscope (TEM)
  • Thermochemistry

  • Melting-point apparatus
  • Thermometer
  • Thermogravimetric analyzer (TGA)
  • Other items

  • Colony counter
  • Spiral plater
  • Nuclear magnetic resonance (NMR) instrument
  • Plate reader
  • Control devices

  • Voltage source
  • Function generator
  • Galvanostat
  • Pulse generator
  • Potentiostat
  • Measurement

  • Logic analyzer
  • Multimeter
  • Network analyzer
  • Oscilloscope
  • Spectrum analyzer
  • Time-domain reflectometer
  • Transistor tester
  • Voltmeter
  • Tools

  • Soldering iron
  • Tweezers
  • Wire stripper
  • General

  • Test probe
  • Safety

  • Rubber apron
  • Safety shower
  • Eye and hand

  • Eyewash station
  • Glove box
  • Medical gloves
  • Nitrile gloves
  • Safety glasses
  • Safety goggles
  • Other items

  • Fire blanket
  • Fire extinguisher
  • Fume hood
  • Safety cabinet
  • Solvent cabinet
  • Instruments used in medical laboratories


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Chemostat&oldid=1175485866"

    Category: 
    Bioreactors
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from May 2016
    Articles with unsourced statements from April 2008
    Articles needing additional references from December 2019
    All articles needing additional references
     



    This page was last edited on 15 September 2023, at 10:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki