Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In steam locomotives  





2 Bore pitch  



2.1  Hybrid heads  







3 See also  





4 References  














Bore (engine)






العربية
Čeština
Deutsch
Español
فارسی
Hrvatski
Bahasa Indonesia
Italiano
Lietuvių
Nederlands

Norsk bokmål
Slovenčina
Türkçe
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In a piston engine, the bore (orcylinder bore) is the diameter of each cylinder.

Engine displacement is calculated based on bore, stroke length and the number of cylinders:[1]

displacement = π ( 1/2 × bore )2 × stroke × ncylinders

The stroke ratio, determined by dividing the bore by the stroke, traditionally indicated whether an engine was designed for power at high engine speeds (rpm) or torque at lower engine speeds.[2][3] The term "bore" can also be applied to the bore of a locomotive cylinderorsteam engine pistons.

In steam locomotives[edit]

The term bore also applies to the cylinder of a steam locomotiveorsteam engine.

Bore pitch[edit]

Bore pitch is the distance between the centerline of a cylinder bore to the centerline of the next cylinder bore adjacent to it in an internal combustion engine. It's also referred to as the "mean cylinder width", "bore spacing", "bore center distance" and "cylinder spacing".

The bore pitch is always larger than the inside diameter of the cylinder (the bore and piston diameter) since it includes the thickness of both cylinder walls and any water passage separating them. This is one of the first dimensions required when developing a new engine, since it limits maximum cylinder size (and therefore, indirectly, maximum displacement), and determines the length of the engine (L4, 6, 8) or of that bank of cylinders (V6, V8 etc.).

In addition, the positions of the main bearings must be between individual cylinders (L4 with 5 main bearings, or L6 with 7 main bearings - only one rod journal between main bearings), or between adjacent pairs of cylinders (L4 with 3 main bearings, L6 or V6 with 4 main bearings, or V8 with 5 main bearings - two rod journals between main bearings).

In some older engines (such as the Chevrolet Gen-2 "Stovebolt" inline-six, the GMC straight-6 engine, the Buick Straight-eight, and the Chrysler "Slant 6") the bore pitch is additionally extended to allow more material between the main bearing webs in the block. For example, in an L6 the first pair (#1 &2), center pair (#3 &4), and rear pair (#5 &6) of cylinders that share a pair of main bearings have a smaller pitch than between #2 & 3 and #4 & 5 that "bridge" a main bearing.

Since the start-up expense of casting an engine block is very high, this is a strong incentive to retain this dimension for as long as possible to amortize the tooling cost over a large number of engines. If and when the engine is further refined, modified or enlarged, the bore pitch may be the only dimension retained from its predecessor. The bore diameter is frequently increased to the limit of minimal wall thickness, the water passage is eliminated between each pair of adjacent cylinders, the deck height is increased to accommodate a longer stroke, etc. but in general if the bore pitch is the same, the engines are related.

As an example of development, the Chrysler 277" polyspheric V8, first introduced in 1956, was gradually increased in size by bore and stroke to 326" by 1959, then received a drastic make-over in 1964 to conventional "wedge" combustion chambers, then modified again for stud-mounted rocker arms, and finally underwent an even greater re-design to become the modern 5.7 liter hemi. All of these engines retain the original 4.460" bore pitch distance set down in 1956.

Hybrid heads[edit]

"Hybrid" is the term commonly used to identify an engine modified for high performance by adapting a cylinder head from another (sometimes completely different) brand, size, model or type engine. Note: using a later head of the same engine "family" isn't a true hybrid, but mere modernization.

In some cases, two heads from the donor (source) engine are joined end-to-end to match the number of cylinders on the subject engine (such as using three cylinders each of two V8 heads on a Chevrolet inline-six).

Identical or extremely similar bore pitch is what makes this possible, or (almost) impossible.

See also[edit]

  • Compression ratio
  • Engine displacement
  • References[edit]

    1. ^ Schwaller, Anthony (1999). Motor Automotive Technology. Delmar, New York
  • ^ "Square, Oversquare and Undersquare engines". www.motoetc.com. Retrieved 7 July 2019.
  • ^ "What Is Bore-Stroke Ratio and Square Engine Design?". www.carbiketech.com. 28 June 2017. Retrieved 7 July 2019.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Bore_(engine)&oldid=1183020455"

    Category: 
    Engine technology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from November 2023
    All articles needing additional references
     



    This page was last edited on 1 November 2023, at 19:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki