Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  



1.1  Formation of LiF  





1.2  Formation of NaBr  







2 See also  





3 Notes  





4 References  





5 External links  














BornHaber cycle






العربية
Català
Deutsch
Español
فارسی
Français
Gaeilge
Galego
ि
Bahasa Indonesia
Italiano
Nederlands

Português
Русский
Slovenščina
Suomi
ி
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber, who developed it in 1919.[1][2][3] It was also independently formulated by Kasimir Fajans[4] and published concurrently in the same journal.[1] The cycle is concerned with the formation of an ionic compound from the reaction of a metal (often a Group IorGroup II element) with a halogen or other non-metallic element such as oxygen.

Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy[note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (anexothermic process), or sometimes defined as the energy to break the ionic compound into gaseous ions (anendothermic process). A Born–Haber cycle applies Hess's law to calculate the lattice enthalpy by comparing the standard enthalpy change of formation of the ionic compound (from the elements) to the enthalpy required to make gaseous ions from the elements.

This lattice calculation is complex. To make gaseous ions from elements it is necessary to atomise the elements (turn each into gaseous atoms) and then to ionise the atoms. If the element is normally a molecule then we first have to consider its bond dissociation enthalpy (see also bond energy). The energy required to remove one or more electrons to make a cation is a sum of successive ionization energies; for example, the energy needed to form Mg2+ is the ionization energy required to remove the first electron from Mg, plus the ionization energy required to remove the second electron from Mg+. Electron affinity is defined as the amount of energy released when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion.

The Born–Haber cycle applies only to fully ionic solids such as certain alkali halides. Most compounds include covalent and ionic contributions to chemical bonding and to the lattice energy, which is represented by an extended Born–Haber thermodynamic cycle.[5] The extended Born–Haber cycle can be used to estimate the polarity and the atomic charges of polar compounds.

Examples[edit]

Formation of LiF[edit]

Born–Haber cycle for the standard enthalpy change of formation of lithium fluoride. ΔHlatt corresponds to UL in the text. The downward arrow "electron affinity" shows the negative quantity –EAF, since EAF is usually defined as positive.

The enthalpy of formation of lithium fluoride (LiF) from its elements in their standard states (Li(s) and F2(g)) is modeled in five steps in the diagram:

  1. Atomization enthalpy of lithium
  2. Ionization enthalpy of lithium
  3. Atomization enthalpy of fluorine
  4. Electron affinity of fluorine
  5. Lattice enthalpy

The sum of the energies for each step of the process must equal the enthalpy of formation of lithium fluoride, .

The net enthalpy of formation and the first four of the five energies can be determined experimentally, but the lattice enthalpy cannot be measured directly. Instead, the lattice enthalpy is calculated by subtracting the other four energies in the Born–Haber cycle from the net enthalpy of formation. A similar calculation applies for any metal other than lithium and/or any non-metal other than fluorine.[6]

The word cycle refers to the fact that one can also equate to zero the total enthalpy change for a cyclic process, starting and ending with LiF(s) in the example. This leads to

which is equivalent to the previous equation.

Formation of NaBr[edit]

At ordinary temperatures, Na is solid and Br2 is liquid, so the enthalpy of vaporization of liquid bromine is added to the equation:

In the above equation, is the enthalpy of vaporization of Br2 at the temperature of interest (usually in kJ/mol).

See also[edit]

Notes[edit]

  1. ^ The difference between energy and enthalpy is very small and the two terms are often interchanged freely.

References[edit]

  1. ^ a b Morris, D.F.C.; Short, E.L. (6 December 1969). "The Born-Fajans-Haber Correlation". Nature. 224 (5223): 950–952. Bibcode:1969Natur.224..950M. doi:10.1038/224950a0. S2CID 4199898. A more correct name would be the Born–Fajans–Haber thermochemical correlation.
  • ^ M. Born Verhandlungen der Deutschen Physikalischen Gesellschaft 1919, 21, 679–685.
  • ^ F. Haber Verhandlungen der Deutschen Physikalischen Gesellschaft 1919, 21, 750–768.
  • ^ K. Fajans Verhandlungen der Deutschen Physikalischen Gesellschaft 1919, 21, 714–722.
  • ^ H. Heinz and U. W. Suter Journal of Physical Chemistry B 2004, 108, 18341–18352.
  • ^ Moore, Stanitski, and Jurs. Chemistry: The Molecular Science. 3rd ed. 2008. ISBN 0-495-10521-X. pp. 320–321.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Born–Haber_cycle&oldid=1190438676"

    Categories: 
    Solid-state chemistry
    Thermochemistry
    Fritz Haber
    1916 in science
    1916 in Germany
    Max Born
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Pages that use a deprecated format of the chem tags
     



    This page was last edited on 17 December 2023, at 22:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki