Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Details  





2 Prevention  



2.1  Mitigation  







3 BREACH  





4 References  














CRIME






Català
Español

עברית

Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


CRIME (Compression Ratio Info-leak Made Easy) is a security vulnerabilityinHTTPS and SPDY protocols that utilize compression, which can leak the content of secret web cookies.[1] When used to recover the content of secret authentication cookies, it allows an attacker to perform session hijacking on an authenticated web session, allowing the launching of further attacks. CRIME was assigned CVE-2012-4929.[2]

Details[edit]

The vulnerability exploited is a combination of chosen plaintext attack and inadvertent information leakage through data compression, similar to that described in 2002 by the cryptographer John Kelsey.[3] It relies on the attacker being able to observe the size of the ciphertext sent by the browser while at the same time inducing the browser to make multiple carefully crafted web connections to the target site. The attacker then observes the change in size of the compressed request payload, which contains both the secret cookie that is sent by the browser only to the target site, and variable content created by the attacker, as the variable content is altered. When the size of the compressed content is reduced, it can be inferred that it is probable that some part of the injected content matches some part of the source, which includes the secret content that the attacker desires to discover. Divide and conquer techniques can then be used to home in on the true secret content in a relatively small number of probe attempts that is a small multiple of the number of secret bytes to be recovered.[1][4]

The CRIME exploit was hypothesized by Adam Langley,[5] and first demonstrated by the security researchers Juliano Rizzo and Thai Duong, who also created the BEAST exploit.[6] The exploit was due to be revealed in full at the 2012 ekoparty security conference.[7] Rizzo and Duong presented CRIME as a general attack that works effectively against a large number of protocols, including but not limited to SPDY (which always compresses request headers), TLS (which may compress records) and HTTP (which may compress responses).[2]

Prevention[edit]

CRIME can be defeated by preventing the use of compression, either at the client end, by the browser disabling the compression of SPDY requests, or by the website preventing the use of data compression on such transactions using the protocol negotiation features of the TLS protocol. As detailed in The Transport Layer Security (TLS) Protocol Version 1.2,[8] the client sends a list of compression algorithms in its ClientHello message, and the server picks one of them and sends it back in its ServerHello message. The server can only choose a compression method the client has offered, so if the client only offers 'none' (no compression), the data will not be compressed. Similarly, since 'no compression' must be allowed by all TLS clients, a server can always refuse to use compression.[citation needed]

Mitigation[edit]

As of September 2012, the CRIME exploit against SPDY and TLS-level compression was described as mitigated in the then-latest versions of the Chrome and Firefox web browsers.[6] Some websites have applied countermeasures at their end.[9] The nginx web-server was not vulnerable to CRIME since 1.0.9/1.1.6 (October/November 2011) using OpenSSL 1.0.0+, and since 1.2.2/1.3.2 (June / July 2012) using all versions of OpenSSL.[10]

Note that as of December 2013 the CRIME exploit against HTTP compression has not been mitigated at all.[citation needed] Rizzo and Duong have warned that this vulnerability might be even more widespread than SPDY and TLS compression combined.[citation needed]

BREACH[edit]

At the August 2013 Black Hat conference, researchers Gluck, Harris and Prado announced a variant of the CRIME exploit against HTTP compression called BREACH (short for Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext). It uncovers HTTPS secrets by attacking the inbuilt HTTP data compression used by webservers to reduce network traffic.[11]

References[edit]

  1. ^ a b Fisher, Dennis (September 13, 2012). "CRIME Attack Uses Compression Ratio of TLS Requests as Side Channel to Hijack Secure Sessions". ThreatPost. Retrieved September 13, 2012.
  • ^ a b "CVE-2012-4929". Mitre Corporation.
  • ^ Kelsey, J. (2002). "Compression and Information Leakage of Plaintext". Fast Software Encryption. Lecture Notes in Computer Science. Vol. 2365. pp. 263–276. doi:10.1007/3-540-45661-9_21. ISBN 978-3-540-44009-3.
  • ^ "CRIME - How to beat the BEAST successor?". StackExchange.com. September 8, 2012. Retrieved September 13, 2012.
  • ^ Langley, Adam (August 16, 2011). "Re: Compression contexts and privacy considerations". spdy-dev (Mailing list).
  • ^ a b Goodin, Dan (September 13, 2012). "Crack in Internet's foundation of trust allows HTTPS session hijacking". Ars Technica. Retrieved September 13, 2012.
  • ^ Rizzo, Juliano; Duong, Thai. "The CRIME attack". Ekoparty. Retrieved September 21, 2012 – via Google Docs.
  • ^ Dierks, T.; Resorla, E. (August 2008). "The Transport Layer Security (TLS) Protocol Version 1.2 - Appendix A.4.1 (Hello messages)". IETF. doi:10.17487/RFC5246. Retrieved July 10, 2013. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ Leyden, John (September 14, 2012). "The perfect CRIME? New HTTPS web hijack attack explained". The Register. Retrieved September 16, 2012.
  • ^ Sysoev, Igor (September 26, 2012). "Nginx mailing list: crime tls attack". nginx.org. Retrieved July 11, 2013.
  • ^ Goodin, Dan (August 1, 2013). "Gone in 30 seconds: New attack plucks secrets from HTTPS-protected pages".

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=CRIME&oldid=1179948471"

    Categories: 
    Cryptographic attacks
    Data compression
    Chosen-plaintext attacks
    2012 in computing
    Transport Layer Security
    Hidden categories: 
    CS1 errors: missing periodical
    Articles with short description
    Short description is different from Wikidata
    Use mdy dates from September 2013
    All articles with unsourced statements
    Articles with unsourced statements from May 2016
    Articles containing potentially dated statements from September 2012
    All articles containing potentially dated statements
     



    This page was last edited on 13 October 2023, at 14:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki