Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Integral version  





3 Carleson's inequality  





4 Proof  





5 Versions for specific sequences  





6 Notes  





7 References  





8 External links  














Carleman's inequality






Deutsch
Français
Italiano
Magyar
Русский
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Carleman's inequality is an inequalityinmathematics, named after Torsten Carleman, who proved it in 1923[1] and used it to prove the Denjoy–Carleman theorem on quasi-analytic classes.[2][3]

Statement[edit]

Let be a sequenceofnon-negative real numbers, then

The constant (euler number) in the inequality is optimal, that is, the inequality does not always hold if is replaced by a smaller number. The inequality is strict (it holds with "<" instead of "≤") if some element in the sequence is non-zero.

Integral version[edit]

Carleman's inequality has an integral version, which states that

for any f ≥ 0.

Carleson's inequality[edit]

A generalisation, due to Lennart Carleson, states the following:[4]

for any convex function g with g(0) = 0, and for any -1 < p < ∞,

Carleman's inequality follows from the case p = 0.

Proof[edit]

An elementary proof is sketched below. From the inequality of arithmetic and geometric means applied to the numbers

where MG stands for geometric mean, and MA — for arithmetic mean. The Stirling-type inequality applied to implies

for all

Therefore,

whence

proving the inequality. Moreover, the inequality of arithmetic and geometric means of non-negative numbers is known to be an equality if and only if all the numbers coincide, that is, in the present case, if and only if for . As a consequence, Carleman's inequality is never an equality for a convergent series, unless all vanish, just because the harmonic series is divergent.

One can also prove Carleman's inequality by starting with Hardy's inequality

for the non-negative numbers a1,a2,... and p > 1, replacing each an with a1/p
n
, and letting p → ∞.

Versions for specific sequences[edit]

Christian Axler and Mehdi Hassani investigated Carleman's inequality for the specific cases of where is the th prime number. They also investigated the case where .[5] They found that if one can replace with in Carleman's inequality, but that if then remained the best possible constant.

Notes[edit]

  1. ^ T. Carleman, Sur les fonctions quasi-analytiques, Conférences faites au cinquième congres des mathématiciens Scandinaves, Helsinki (1923), 181-196.
  • ^ Duncan, John; McGregor, Colin M. (2003). "Carleman's inequality". Amer. Math. Monthly. 110 (5): 424–431. doi:10.2307/3647829. MR 2040885.
  • ^ Pečarić, Josip; Stolarsky, Kenneth B. (2001). "Carleman's inequality: history and new generalizations". Aequationes Mathematicae. 61 (1–2): 49–62. doi:10.1007/s000100050160. MR 1820809.
  • ^ Carleson, L. (1954). "A proof of an inequality of Carleman" (PDF). Proc. Amer. Math. Soc. 5: 932–933. doi:10.1090/s0002-9939-1954-0065601-3.
  • ^ Christian Axler, Medhi Hassani. "Carleman's Inequality over prime numbers" (PDF). Integers. 21, Article A53. Retrieved 13 November 2022.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Carleman%27s_inequality&oldid=1174905742"

    Categories: 
    Real analysis
    Inequalities
    Hidden category: 
    CS1: long volume value
     



    This page was last edited on 11 September 2023, at 13:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki