Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 General one-dimensional version  





2 Multidimensional versions  



2.1  Multidimensional Hardy inequality around a point  





2.2  Multidimensional Hardy inequality near the boundary  







3 Fractional Hardy inequality  





4 Proof of the inequality  



4.1  Integral version  





4.2  Discrete version: from the continuous version  





4.3  Discrete version: Direct proof  







5 See also  





6 Notes  





7 References  





8 External links  














Hardy's inequality






Bosanski
Español
Euskara
Français

Italiano
Magyar

Русский
Suomi
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Hardy's inequality is an inequalityinmathematics, named after G. H. Hardy. It states that if is a sequenceofnon-negative real numbers, then for every real number p > 1 one has

If the right-hand side is finite, equality holds if and only if for all n.

Anintegral version of Hardy's inequality states the following: if f is a measurable function with non-negative values, then

If the right-hand side is finite, equality holds if and only if f(x) = 0 almost everywhere.

Hardy's inequality was first published and proved (at least the discrete version with a worse constant) in 1920 in a note by Hardy.[1] The original formulation was in an integral form slightly different from the above.

General one-dimensional version[edit]

The general weighted one dimensional version reads as follows:[2]: §329 

Multidimensional versions[edit]

Multidimensional Hardy inequality around a point[edit]

In the multidimensional case, Hardy's inequality can be extended to -spaces, taking the form [3]

where , and where the constant is known to be sharp; by density it extends then to the Sobolev space .

Similarly, if , then one has for every

Multidimensional Hardy inequality near the boundary[edit]

If is an nonempty convex open set, then for every ,

and the constant cannot be improved.[4]

Fractional Hardy inequality[edit]

If and , , there exists a constant such that for every satisfying , one has[5]: Lemma 2 

Proof of the inequality[edit]

Integral version[edit]

Achange of variables gives

which is less or equal than byMinkowski's integral inequality. Finally, by another change of variables, the last expression equals

Discrete version: from the continuous version[edit]

Assuming the right-hand side to be finite, we must have as. Hence, for any positive integer j, there are only finitely many terms bigger than . This allows us to construct a decreasing sequence containing the same positive terms as the original sequence (but possibly no zero terms). Since for every n, it suffices to show the inequality for the new sequence. This follows directly from the integral form, defining if and otherwise. Indeed, one has

and, for , there holds

(the last inequality is equivalent to , which is true as the new sequence is decreasing) and thus

.

Discrete version: Direct proof[edit]

Let and let be positive real numbers. Set . First we prove the inequality

(*)

Let and let be the difference between the -th terms in the right-hand side and left-hand side of *, that is, . We have:

or

According to Young's inequality we have:

from which it follows that:

By telescoping we have:

proving *. Applying Hölder's inequality to the right-hand side of * we have:

from which we immediately obtain:

Letting we obtain Hardy's inequality.

See also[edit]

Notes[edit]

  1. ^ Hardy, G. H. (1920). "Note on a theorem of Hilbert". Mathematische Zeitschrift. 6 (3–4): 314–317. doi:10.1007/BF01199965. S2CID 122571449.
  • ^ Hardy, G. H.; Littlewood, J.E.; Pólya, G. (1952). Inequalities (Second ed.). Cambridge, UK.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities. Birkhäuser Basel. ISBN 978-3-030-02894-7.
  • ^ Marcus, Moshe; Mizel, Victor J.; Pinchover, Yehuda (1998). "On the best constant for Hardy's inequality in $\mathbb {R}^n$". Transactions of the American Mathematical Society. 350 (8): 3237–3255. doi:10.1090/S0002-9947-98-02122-9.
  • ^ Mironescu, Petru (2018). "The role of the Hardy type inequalities in the theory of function spaces" (PDF). Revue roumaine de mathématiques pures et appliquées. 63 (4): 447–525.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hardy%27s_inequality&oldid=1189914651"

    Categories: 
    Inequalities
    Theorems in real analysis
    Hidden category: 
    CS1 maint: location missing publisher
     



    This page was last edited on 14 December 2023, at 20:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki