Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Cerium oxidation states  





2 Cerium anomalies in zircon  





3 Cerium anomalies in coal  



3.1  Negative cerium anomalies  





3.2  Positive cerium anomalies  







4 See also  





5 External links  





6 References  














Cerium anomaly






Español

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The cerium anomaly, in geochemistry, is the phenomenon whereby cerium (Ce) concentration is either depleted or enriched in a rock relative to the other rare-earth elements (REEs).[1] A Ce anomaly is said to be "negative" if Ce is depleted relative to the other REEs and is said to be "positive" if Ce is enriched relative to the other REEs.[1]

Cerium oxidation states[edit]

Cerium is a rare-earth element (lanthanide) characterized by two different redox states: III and IV. Contrary to other lanthanide elements, which are only trivalent (with the notable exception of Eu2+), Ce3+ can be oxidized by atmospheric oxygen (O2) to Ce4+ under alkaline conditions.[2]

The cerium anomaly relates to the decrease in solubility, which accompanies the oxidation of Ce(III) to Ce(IV). Under reducing conditions, Ce3+ is relatively soluble, while under oxidizing conditions CeO2 precipitates.[1] Sediments deposited under oxic or anoxic conditions can preserve on the long term the geochemical signature of Ce3+ or Ce4+ upon reserve that no early diagenetic transformation altered it.[1]

Cerium anomalies in zircon[edit]

Crystal structure of Ceria-zirconia. Ce4+ has the same charge and similar ionic radius as Ze4+ resulting in elemental substitution and therefore a positive cerium anomaly.[1]

Zircon (ZrSiO4) is commonly found in felsic igneous rock.[3] Because both Ce3+ and Ce4+ can substitute for zirconium, Zircon often has a positive Ce anomaly.[3]Ce4+ substitutes with Zr much more easily than Ce3+ because Ce4+ (ionic radius 0.97Å) has the same charge and a similar ionic radius as Zr4+ (ionic radius 0.84Å).[1] Therefore, the oxidation state of the magma is what determines the Ce anomaly in Zircon.[3] If the oxygen fugacity is high, more Ce3+ will oxidize to Ce4+ and create a larger positive Ce anomaly in the zircon structure. At lower levels of oxygen fugacity, the level of Ce anomaly will also be lower.[3]

Cerium anomalies in coal[edit]

Negative cerium anomalies[edit]

Cerium in coal is typically weakly negative, meaning that it is present at slightly lower concentrations than the other rare-earth elements.[2] Cerium anomalies in coal are influenced by the sediment source region.[2] Coal mined from mafic regions dominated by basalts, such as the location of the Xinde Mine in China, does not have a Ce-anomaly.[2] In contrast, coal mined in felsic rock regions, such as Guxu Coalfield in China, does have weakly negative Ce-anomalies.[2] Negative Ce-anomalies can also be attributed to the weathering and oxidation of the coal-mining region.[2] During oxidation, Ce3+ precipitates out as CeO2, leaving less Ce in the coal.[1]

Positive cerium anomalies[edit]

While cerium anomalies in coal are usually negative, they can rarely be positive as well.[4] This can occur during volcanic eruptions when volcanic ash is weathered into mafic tuffs with positive Ce-anomalies.[1] The Pavlovka deposit in Far East Russia has large positive Ce-anomalies in its Fe-Mn oxyhydroxide ores.[4] Because cerium is one of only two REEs that can obtain an oxidation number of +4, Ce4+ is absorbed into Mn(IV) oxides instead of other REEs and this results in a positive Ce-anomaly.[4]

See also[edit]

External links[edit]

References[edit]

  1. ^ a b c d e f g h Thomas, J. B.; Bodnar, R. J.; Shimizu, N.; Chesner, C. A. (2003). "Melt Inclusions in Zircon". Reviews in Mineralogy and Geochemistry. 53 (1): 63–87. Bibcode:2003RvMG...53...63T. doi:10.2113/0530063. ISSN 1529-6466.
  • ^ a b c d e f Dai, Shifeng; Graham, Ian T.; Ward, Colin R. (2016). "A review of anomalous rare earth elements and yttrium in coal". International Journal of Coal Geology. 159: 82–95. doi:10.1016/j.coal.2016.04.005. ISSN 0166-5162.
  • ^ a b c d Zhong, Shihua; Seltmann, Reimar; Qu, Hongying; Song, Yingxin (2019). "Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method". Mineralogy and Petrology. 113 (6): 755–763. doi:10.1007/s00710-019-00682-y. ISSN 0930-0708. S2CID 201713664.
  • ^ a b c Laveuf, C.; Cornu, S. (2009). "A review on the potentiality of Rare Earth Elements to trace pedogenetic processes". Geoderma. 154 (1–2): 1–12. doi:10.1016/j.geoderma.2009.10.002.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Cerium_anomaly&oldid=1138747062"

    Categories: 
    Geochemistry
    Lanthanides
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 11 February 2023, at 10:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki