Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Europium anomaly






Español
Suomi

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Rare-earth element abundances of basalts, of both terrestrial and lunar origins[1]

The europium anomaly is the phenomenon whereby the europium (Eu) concentration in a mineral is either enriched or depleted relative to some standard, commonly a chondriteormid-ocean ridge basalt (MORB). In geochemistry a europium anomaly is said to be "positive" if the Eu concentration in the mineral is enriched relative to the other rare-earth elements (REEs), and is said to be "negative" if Eu is depleted relative to the other REEs.

While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valences, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs. In the case of Eu, its reduced divalent (2+) cations are similar in size and carry the same charge as Ca2+, an ion found in plagioclase and other minerals. While Eu is an incompatible element in its trivalent form (Eu3+) in an oxidizing magma, it is preferentially incorporated into plagioclase in its divalent form (Eu2+) in a reducing magma, where it substitutes for calcium (Ca2+).[2]

Enrichment or depletion is generally attributed to europium's tendency to be incorporated into plagioclase preferentially over other minerals. If a magma crystallizes stable plagioclase, most of the Eu will be incorporated into this mineral, causing a higher than expected concentration of Eu in the mineral versus other REE in that mineral (a positive anomaly). The rest of the magma will then be relatively depleted in Eu with a concentration of Eu lower than expected versus the concentrations of other REEs in that magma. If the Eu-depleted magma is then separated from its plagioclase crystals and subsequently solidifies, its chemical composition will display a negative Eu anomaly (because the Eu is locked up in the plagioclase left in the magma chamber). Conversely, if a magma accumulates plagioclase crystals before solidification, its rock composition will display a relatively positive Eu anomaly.[3][4]

A well-known example of the Eu anomaly is seen on the Moon. REE analyses of the Moon's light-colored lunar highlands show a large positive Eu anomaly due to the plagioclase-rich anorthosite comprising the highlands. The darker lunar mare, consisting mainly of basalt, shows a large negative Eu anomaly. This has led geologists to speculate as to the genetic relationship between the lunar highlands and mare. It is possible that much of the Moon's Eu was incorporated into the earlier, plagioclase-rich highlands, leaving the later basaltic mare strongly depleted in Eu.[5]

See also[edit]

References[edit]

  1. ^ McLeod, Claire L.; Krekeler, Mark. P. S. (August 2017). "Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond". Resources. 6 (3). MDPI: 40. Bibcode:2017Resou...6...40M. doi:10.3390/resources6030040.
  • ^ Sinha, Shyama P.; Scientific Affairs Division, North Atlantic Treaty Organization (1983). "The Europium anomaly". Systematics and the properties of the lanthanides. pp. 550–553. ISBN 978-90-277-1613-2.
  • ^ Weill, D. F.; Drake, M. J. (1973). "Europium Anomaly in Plagioclase Feldspar: Experimental Results and Semiquantitative Model". Science. 180 (4090): 1059–1060. Bibcode:1973Sci...180.1059W. doi:10.1126/science.180.4090.1059. PMID 17806582.
  • ^ Bau, M. (1991). "Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium". Chemical Geology. 93 (3–4): 219–230. Bibcode:1991ChGeo..93..219B. doi:10.1016/0009-2541(91)90115-8.
  • ^ Mcsween, Jr., Harry Y.; Huss, Gary R. (30 June 2010). "Composition of the Lunar Mantle and Core". Cosmochemistry. pp. 456–460. ISBN 978-0-521-87862-3.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Europium_anomaly&oldid=1223185699"

    Categories: 
    Lanthanides
    Geochemistry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 10 May 2024, at 12:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki