Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Reaction formula  



1.1  Additional examples  







2 See also  





3 References  





4 External links  














Chemical decomposition






العربية
Български
Català
Чӑвашла
Čeština
Cymraeg
Deutsch
Eesti
Ελληνικά
Español
فارسی
Français

ि
Bahasa Indonesia
Italiano
Kreyòl ayisyen
Magyar
Nederlands


Polski
Português
Română
Русский
Shqip
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
ி

Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Chemical decomposition, or chemical breakdown, is the process or effect of simplifying a single chemical entity (normal molecule, reaction intermediate, etc.) into two or more fragments.[1] Chemical decomposition is usually regarded and defined as the exact opposite of chemical synthesis. In short, the chemical reaction in which two or more products are formed from a single reactant is called a decomposition reaction.

The details of a decomposition process are not always well defined. Nevertheless, some activation energy is generally needed to break the involved bonds and as such, higher temperatures generally accelerates decomposition. The net reaction can be an endothermic process, or in the case of spontaneous decompositions, an exothermic process.

The stability of a chemical compound is eventually limited when exposed to extreme environmental conditions such as heat, radiation, humidity, or the acidity of a solvent. Because of this chemical decomposition is often an undesired chemical reaction. However chemical decomposition can be desired, such as in various waste treatment processes.

For example, this method is employed for several analytical techniques, notably mass spectrometry, traditional gravimetric analysis, and thermogravimetric analysis. Additionally decomposition reactions are used today for a number of other reasons in the production of a wide variety of products. One of these is the explosive breakdown reaction of sodium azide [(NaN3)2] into nitrogen gas (N2) and sodium (Na). It is this process which powers the life-saving airbags present in virtually all of today's automobiles.[2]

Decomposition reactions can be generally classed into three categories; thermal, electrolytic, and photolytic decomposition reactions.[3]

Reaction formula[edit]

In the breakdown of a compound into its constituent parts, the generalized reaction for chemical decomposition is:

AB → A + B (AB represents the reactant that begins the reaction, and A and B represent the products of the reaction)

An example is the electrolysisofwater to the gases hydrogen and oxygen:

2 H2O(l) → 2 H2(g) + O2(g)

Additional examples[edit]

An experiment describing catalytic decomposition of hydrogen peroxide, with MnO2 as catalyst. A concentrated hydrogen peroxide solution can be easily decomposed to water and oxygen.

An example of a spontaneous (without addition of an external energy source) decomposition is that of hydrogen peroxide which slowly decomposes into water and oxygen (see video at right):

2 H2O2 → 2 H2O + O2

This reaction is one of the exceptions to the endothermic nature of decomposition reactions.

Other reactions involving decomposition do require the input of external energy. This energy can be in the form of heat, radiation, electricity, or light. The latter being the reason some chemical compounds, such as many prescription medicines, are kept and stored in dark bottles which reduce or eliminate the possibility of light reaching them and initiating decomposition.

When heated, carbonates will decompose. A notable exception is carbonic acid, (H2CO3).[4] Commonly seen as the "fizz" in carbonated beverages, carbonic acid will spontaneously decompose over time into carbon dioxide and water. The reaction is written as:

H2CO3 → H2O + CO2

Other carbonates will decompose when heated to produce their corresponding metal oxide and carbon dioxide.[5] The following equation is an example, where M represents the given metal:

MCO3MO + CO2

A specific example is that involving calcium carbonate:

CaCO3 → CaO + CO2

Metal chlorates also decompose when heated. In this type of decomposition reaction, a metal chloride and oxygen gas are the products. Here, again, M represents the metal:

2MClO3 → 2 MCl+ 3 O2

A common decomposition of a chlorate is in the reaction of potassium chlorate where oxygen is the product. This can be written as:

2 KClO3 → 2 KCl + 3 O2

See also[edit]

References[edit]

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "chemical decomposition". doi:10.1351/goldbook.C01020
  • ^ "Chemical reactions in Everyday life". prezi.com. Retrieved 2017-05-01.
  • ^ "Decomposition Reactions".
  • ^ ibburke (2011-03-27). "Decomposition of Carbonic Acid Culminating by Elizabeth Burke". ibburke. Retrieved 2017-03-04.
  • ^ Walker, MS (2016) [Available now]. "Synthesis and Decomposition Reactions". Quizlet.com/MSWalker22 (Audio-Video Online Lecture). Online Series in Organic Chemistry. Retrieved 2017-03-04.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Chemical_decomposition&oldid=1220541429"

    Categories: 
    Inorganic chemistry
    Organic chemistry
    Chemical reactions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link from Wikidata
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 24 April 2024, at 12:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki