Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Relation to speed of sound  





1.2  Relation to bulk modulus  







2 Thermodynamics  





3 Earth science  





4 Fluid dynamics  





5 Aerodynamics  





6 Negative compressibility  





7 See also  





8 References  














Compressibility






Afrikaans
العربية
Asturianu

Беларуская
Català
Čeština
Dansk
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Bahasa Indonesia
Italiano
Қазақша
Latviešu
Magyar

Bahasa Melayu
Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Português
Română
Русский
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
ி
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Compressible)

Inthermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility[1] or, if the temperature is held constant, the isothermal compressibility[2]) is a measure of the instantaneous relative volume change of a fluidorsolid as a response to a pressure (or mean stress) change. In its simple form, the compressibility (denoted β in some fields) may be expressed as

,

where Visvolume and p is pressure. The choice to define compressibility as the negative of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. The reciprocal of compressibility at fixed temperature is called the isothermal bulk modulus.

Definition[edit]

The specification above is incomplete, because for any object or system the magnitude of the compressibility depends strongly on whether the process is isentropicorisothermal. Accordingly, isothermal compressibility is defined:

where the subscript T indicates that the partial differential is to be taken at constant temperature.

Isentropic compressibility is defined:

where S is entropy. For a solid, the distinction between the two is usually negligible.

Since the density ρ of a material is inversely proportional to its volume, it can be shown that in both cases

Relation to speed of sound[edit]

The speed of sound is defined in classical mechanics as:

It follows, by replacing partial derivatives, that the isentropic compressibility can be expressed as:

Relation to bulk modulus[edit]

The inverse of the compressibility is called the bulk modulus, often denoted K (sometimes Bor).). The compressibility equation relates the isothermal compressibility (and indirectly the pressure) to the structure of the liquid.

Thermodynamics[edit]

The isothermal compressibility is generally related to the isentropic (oradiabatic) compressibility by a few relations:[3]

where γ is the heat capacity ratio, α is the volumetric coefficient of thermal expansion, ρ = N/V is the particle density, and is the thermal pressure coefficient.

In an extensive thermodynamic system, the application of statistical mechanics shows that the isothermal compressibility is also related to the relative size of fluctuations in particle density:[3]

where μ is the chemical potential.

The term "compressibility" is also used in thermodynamics to describe deviations of the thermodynamic properties of a real gas from those expected from an ideal gas.

The compressibility factor is defined as

where p is the pressure of the gas, T is its temperature, and is its molar volume, all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered:

Z can, in general, be either greater or less than unity for a real gas.

The deviation from ideal gas behavior tends to become particularly significant (or, equivalently, the compressibility factor strays far from unity) near the critical point, or in the case of high pressure or low temperature. In these cases, a generalized compressibility chart or an alternative equation of state better suited to the problem must be utilized to produce accurate results.

Earth science[edit]

Vertical, drained compressibilities[4]
Material (m2/N or Pa−1)
Plastic clay 2×10−62.6×10−7
Stiff clay 2.6×10−71.3×10−7
Medium-hard clay 1.3×10−76.9×10−8
Loose sand 1×10−75.2×10−8
Dense sand 2×10−81.3×10−8
Dense, sandy gravel 1×10−85.2×10−9
Ethyl alcohol[5] 1.1×10−9
Carbon disulfide[5] 9.3×10−10
Rock, fissured 6.9×10−103.3×10−10
Water at 25 °C (undrained)[5][6] 4.6×10–10
Rock, sound < 3.3×10−10
Glycerine[5] 2.1×10−10
Mercury[5] 3.7×10−11

The Earth sciences use compressibility to quantify the ability of a soil or rock to reduce in volume under applied pressure. This concept is important for specific storage, when estimating groundwater reserves in confined aquifers. Geologic materials are made up of two portions: solids and voids (or same as porosity). The void space can be full of liquid or gas. Geologic materials reduce in volume only when the void spaces are reduced, which expel the liquid or gas from the voids. This can happen over a period of time, resulting in settlement.

It is an important concept in geotechnical engineering in the design of certain structural foundations. For example, the construction of high-rise structures over underlying layers of highly compressible bay mud poses a considerable design constraint, and often leads to use of driven piles or other innovative techniques.

Fluid dynamics[edit]

The degree of compressibility of a fluid has strong implications for its dynamics. Most notably, the propagation of sound is dependent on the compressibility of the medium.

Aerodynamics[edit]

Compressibility is an important factor in aerodynamics. At low speeds, the compressibility of air is not significant in relation to aircraft design, but as the airflow nears and exceeds the speed of sound, a host of new aerodynamic effects become important in the design of aircraft. These effects, often several of them at a time, made it very difficult for World War II era aircraft to reach speeds much beyond 800 km/h (500 mph).

Many effects are often mentioned in conjunction with the term "compressibility", but regularly have little to do with the compressible nature of air. From a strictly aerodynamic point of view, the term should refer only to those side-effects arising as a result of the changes in airflow from an incompressible fluid (similar in effect to water) to a compressible fluid (acting as a gas) as the speed of sound is approached. There are two effects in particular, wave drag and critical mach.

One complication occurs in hypersonic aerodynamics, where dissociation causes an increase in the "notional" molar volume because a mole of oxygen, as O2, becomes 2 moles of monatomic oxygen and N2 similarly dissociates to 2 N. Since this occurs dynamically as air flows over the aerospace object, it is convenient to alter the compressibility factor Z, defined for an initial 30 gram moles of air, rather than track the varying mean molecular weight, millisecond by millisecond. This pressure dependent transition occurs for atmospheric oxygen in the 2,500–4,000 K temperature range, and in the 5,000–10,000 K range for nitrogen.[7]

In transition regions, where this pressure dependent dissociation is incomplete, both beta (the volume/pressure differential ratio) and the differential, constant pressure heat capacity greatly increases. For moderate pressures, above 10,000 K the gas further dissociates into free electrons and ions. Z for the resulting plasma can similarly be computed for a mole of initial air, producing values between 2 and 4 for partially or singly ionized gas. Each dissociation absorbs a great deal of energy in a reversible process and this greatly reduces the thermodynamic temperature of hypersonic gas decelerated near the aerospace object. Ions or free radicals transported to the object surface by diffusion may release this extra (nonthermal) energy if the surface catalyzes the slower recombination process.

Negative compressibility[edit]

For ordinary materials, the bulk compressibility (sum of the linear compressibilities on the three axes) is positive, that is, an increase in pressure squeezes the material to a smaller volume. This condition is required for mechanical stability.[8] However, under very specific conditions, materials can exhibit a compressibility that can be negative.[9][10][11][12]

See also[edit]

References[edit]

  1. ^ "Coefficient of compressibility - AMS Glossary". Glossary.AMetSoc.org. Retrieved 3 May 2017.
  • ^ "Isothermal compressibility of gases -". Petrowiki.org. 3 June 2015. Retrieved 3 May 2017.
  • ^ a b Landau; Lifshitz (1980). Course of Theoretical Physics Vol 5: Statistical Physics. Pergamon. pp. 54–55 and 342.
  • ^ Domenico, P. A.; Mifflin, M. D. (1965). "Water from low permeability sediments and land subsidence". Water Resources Research. 1 (4): 563–576. Bibcode:1965WRR.....1..563D. doi:10.1029/WR001i004p00563. OSTI 5917760.
  • ^ a b c d e Hugh D. Young; Roger A. Freedman. University Physics with Modern Physics. Addison-Wesley; 2012. ISBN 978-0-321-69686-1. p. 356.
  • ^ Fine, Rana A.; Millero, F. J. (1973). "Compressibility of water as a function of temperature and pressure". Journal of Chemical Physics. 59 (10): 5529–5536. Bibcode:1973JChPh..59.5529F. doi:10.1063/1.1679903.
  • ^ Regan, Frank J. (1993). Dynamics of Atmospheric Re-entry. American Institute of Aeronautics and Astronautics. p. 313. ISBN 1-56347-048-9.
  • ^ Munn, R. W. (1971). "Role of the elastic constants in negative thermal expansion of axial solids". Journal of Physics C: Solid State Physics. 5 (5): 535–542. Bibcode:1972JPhC....5..535M. doi:10.1088/0022-3719/5/5/005.
  • ^ Lakes, Rod; Wojciechowski, K. W. (2008). "Negative compressibility, negative Poisson's ratio, and stability". Physica Status Solidi B. 245 (3): 545. Bibcode:2008PSSBR.245..545L. doi:10.1002/pssb.200777708.
  • ^ Gatt, Ruben; Grima, Joseph N. (2008). "Negative compressibility". Physica Status Solidi RRL. 2 (5): 236. Bibcode:2008PSSRR...2..236G. doi:10.1002/pssr.200802101. S2CID 216142598.
  • ^ Kornblatt, J. A. (1998). "Materials with Negative Compressibilities". Science. 281 (5374): 143a–143. Bibcode:1998Sci...281..143K. doi:10.1126/science.281.5374.143a.
  • ^ Moore, B.; Jaglinski, T.; Stone, D. S.; Lakes, R. S. (2006). "Negative incremental bulk modulus in foams". Philosophical Magazine Letters. 86 (10): 651. Bibcode:2006PMagL..86..651M. doi:10.1080/09500830600957340. S2CID 41596692.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Compressibility&oldid=1224020073"

    Categories: 
    Thermodynamic properties
    Fluid dynamics
    Mechanical quantities
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
     



    This page was last edited on 15 May 2024, at 19:39 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki