Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Overview  





3 List of state functions  





4 See also  





5 Notes  





6 References  





7 External links  














State function






العربية
Asturianu
 / Bân-lâm-gú
Català
Čeština
Deutsch
Eesti
Español
Esperanto
Euskara
فارسی
Français
Galego

Italiano
עברית
Magyar
Nederlands

Polski
Português
Русский
Slovenčina
Српски / srpski
Suomi
Svenska
ி
Türkçe
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities (that describe equilibrium states of a system) that depend only on the current equilibrium thermodynamic state of the system[1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which the system has taken to reach that state. A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The ideal gas law is a good example. In this law, one state variable (e.g., pressure, volume, temperature, or the amount of substance in a gaseous equilibrium system) is a function of other state variables so is regarded as a state function. A state function could also describe the number of a certain type of atoms or molecules in a gaseous, liquid, or solid form in a heterogeneousorhomogeneous mixture, or the amount of energy required to create such a system or change the system into a different equilibrium state.

Internal energy, enthalpy, and entropy are examples of state quantities or state functions because they quantitatively describe an equilibrium state of a thermodynamic system, regardless of how the system has arrived in that state. In contrast, mechanical work and heat are process quantities or path functions because their values depend on a specific "transition" (or "path") between two equilibrium states that a system has taken to reach the final equilibrium state. Heat (in certain discrete amounts) can describe a state function such as enthalpy, but in general, does not truly describe the system unless it is defined as the state function of a certain system, and thus enthalpy is described by an amount of heat. This can also apply to entropy when heat is compared to temperature. The description breaks down for quantities exhibiting hysteresis.[2]

History[edit]

It is likely that the term "functions of state" was used in a loose sense during the 1850s and 1860s by those such as Rudolf Clausius, William Rankine, Peter Tait, and William Thomson. By the 1870s, the term had acquired a use of its own. In his 1873 paper "Graphical Methods in the Thermodynamics of Fluids", Willard Gibbs states: "The quantities v, p, t, ε, and η are determined when the state of the body is given, and it may be permitted to call them functions of the state of the body."[3]

Overview[edit]

A thermodynamic system is described by a number of thermodynamic parameters (e.g. temperature, volume, or pressure) which are not necessarily independent. The number of parameters needed to describe the system is the dimension of the state space of the system (D). For example, a monatomic gas with a fixed number of particles is a simple case of a two-dimensional system (D = 2). Any two-dimensional system is uniquely specified by two parameters. Choosing a different pair of parameters, such as pressure and volume instead of pressure and temperature, creates a different coordinate system in two-dimensional thermodynamic state space but is otherwise equivalent. Pressure and temperature can be used to find volume, pressure and volume can be used to find temperature, and temperature and volume can be used to find pressure. An analogous statement holds for higher-dimensional spaces, as described by the state postulate.

Generally, a state space is defined by an equation of the form , where P denotes pressure, T denotes temperature, V denotes volume, and the ellipsis denotes other possible state variables like particle number N and entropy S. If the state space is two-dimensional as in the above example, it can be visualized as a three-dimensional graph (a surface in three-dimensional space). However, the labels of the axes are not unique (since there are more than three state variables in this case), and only two independent variables are necessary to define the state.

When a system changes state continuously, it traces out a "path" in the state space. The path can be specified by noting the values of the state parameters as the system traces out the path, whether as a function of time or a function of some other external variable. For example, having the pressure P(t) and volume V(t) as functions of time from time t0tot1 will specify a path in two-dimensional state space. Any function of time can then be integrated over the path. For example, to calculate the work done by the system from time t0 to time t1, calculate . In order to calculate the work W in the above integral, the functions P(t) and V(t) must be known at each time t over the entire path. In contrast, a state function only depends upon the system parameters' values at the endpoints of the path. For example, the following equation can be used to calculate the work plus the integral of V dP over the path:

In the equation, can be expressed as the exact differential of the function P(t)V(t). Therefore, the integral can be expressed as the difference in the value of P(t)V(t) at the end points of the integration. The product PV is therefore a state function of the system.

The notation d will be used for an exact differential. In other words, the integral of dΦ will be equal to Φ(t1) − Φ(t0). The symbol δ will be reserved for an inexact differential, which cannot be integrated without full knowledge of the path. For example, δW = PdV will be used to denote an infinitesimal increment of work.

State functions represent quantities or properties of a thermodynamic system, while non-state functions represent a process during which the state functions change. For example, the state function PV is proportional to the internal energy of an ideal gas, but the work W is the amount of energy transferred as the system performs work. Internal energy is identifiable; it is a particular form of energy. Work is the amount of energy that has changed its form or location.

List of state functions[edit]

The following are considered to be state functions in thermodynamics:

  • Energy (E)
  • Entropy (S)
  • Pressure (P)
  • Temperature (T)
  • Volume (V)
  • Chemical composition
  • Pressure altitude
  • Specific volume (v) or its reciprocal density (ρ)
  • Particle number (ni)
  • See also[edit]

    Notes[edit]

    1. ^ Callen 1985, pp. 5, 37
  • ^ Mandl 1988, p. 7
  • ^ Gibbs 1873, pp. 309–342
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=State_function&oldid=1225989451"

    Categories: 
    State functions
    Thermodynamic properties
    Continuum mechanics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
    Articles with GND identifiers
     



    This page was last edited on 27 May 2024, at 23:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki