Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Signs and symptoms  





2 Pathophysiology  



2.1  Mineralocorticoids  





2.2  Sex steroid  







3 Diagnosis  





4 Management  





5 See also  





6 References  





7 External links  














Congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency






العربية
Deutsch
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency
Other namesCAH due to 3-beta-hydroxysteroid dehydrogenase deficiency
Cortisol
SpecialtyEndocrinology Edit this on Wikidata

Congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase deficiency is an uncommon form of congenital adrenal hyperplasia (CAH) resulting from a mutation in the gene for one of the key enzymesincortisol synthesis by the adrenal gland, 3β-hydroxysteroid dehydrogenase (3β-HSD) type II (HSD3B2).[1][2] As a result, higher levels of 17α-hydroxypregnenolone appear in the blood with adrenocorticotropic hormone (ACTH) challenge, which stimulates adrenal corticosteroid synthesis.

There is a wide spectrum of clinical presentations of 3β-HSD CAH, from mild to severe forms. The uncommon severe form results from a complete loss of enzymatic activity and manifests itself in infancy as salt wasting due to the loss of mineralocorticoids. Milder forms resulting from incomplete loss of 3β-HSD type II function do not present with adrenal crisis, but can still produce virilization of genetically female infants and undervirilization of genetically male infants. As a result, this form of primary hypoadrenalism is the only form of CAH that can cause ambiguous genitalia in both genetic sexes.

Signs and symptoms[edit]

Pathophysiology[edit]

3β-HSD II mediates three parallel dehydrogenase/isomerase reactions in the adrenals that convert Δ4 to Δ5 steroids: pregnenolonetoprogesterone, 17α-hydroxypregnenoloneto17α-hydroxyprogesterone, and dehydroepiandrosterone (DHEA) to androstenedione. 3β-HSD II also mediates an alternate route of testosterone synthesis from androstenediol in the testes. 3β-HSD deficiency results in large elevations of pregnenolone, 17α-hydroxypregnenolone, and DHEA. [citation needed]

However, complexity arises from the presence of a second 3β-HSD isoform (HSD3B1) coded by a different gene, expressed in the liver and placenta, and unaffected in 3β-HSD-deficient CAH. The presence of this second enzyme has two clinical consequences. First, 3β-HSD II can convert enough of the excess 17α-hydroxypregnenolone to 17α-hydroxyprogesterone to produce 17α-hydroxyprogesterone levels suggestive of common 21-hydroxylase deficient CAH. Measurement of the other affected steroids distinguishes the two. Second, 3β-HSD I can convert enough DHEA to testosterone to moderately virilize a genetically female fetus.[citation needed]

Mineralocorticoids[edit]

The mineralocorticoid aspect of severe 3β-HSD CAH is similar to those of 21-hydroxylase deficiency. Like other enzymes involved in early stages of both aldosterone and cortisol synthesis, the severe form of 3β-HSD deficiency can result in life-threatening salt-wasting in early infancy. Salt-wasting is managed acutely with saline and high-dose hydrocortisone, and long-term fludrocortisone.[citation needed]

Sex steroid[edit]

The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase-deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.[citation needed]

In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.[citation needed]

The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.[citation needed]

Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.[citation needed]

If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.

Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.[citation needed]

Diagnosis[edit]

Like the other forms of CAH, suspicion of severe 3β-HSD CAH is usually raised by the appearance of the genitalia at birth or by development of a salt-wasting crisis in the first month of life. These severe, classical forms can be observed at birth by the following symptoms: boys may not develop masculine characteristics fully, while girls may have an enlarged clitoris. Both boys and girls may have problems with retaining salt (sodium) in their bodies. If the condition appears later in life (late onset, non-classical forms), there may be a short period of rapid growth. Still, ultimately, the individual may end up being shorter than expected because their bones mature faster. It is common for people with this condition to have difficulty getting pregnant or fathering children. In females, there may be signs of hyperandrogenism.[3][4] The diagnosis is usually confirmed by the distinctive pattern of adrenal steroids: elevated pregnenolone, 17α-hydroxypregnenolone, DHEA, and renin. In clinical circumstances this form of CAH has sometimes been difficult to distinguish from the more common 21-hydroxylase deficient CAH because of the 17α-hydroxypregnenolone elevation, or from simple premature adrenarche because of the DHEA elevation.[citation needed]

Management[edit]

Some of the childhood management issues are similar those of 21-hydroxylase deficiency:[citation needed]

However, unlike 21-hydroxylase CAH, children with 3β-HSD CAH may be unable to produce adequate amounts of testosterone (boys) or estradiol (girls) to effect normal pubertal changes. Replacement testosterone or estrogen and progesterone can be initiated at adolescence and continued throughout adult life. Fertility may be impaired by the difficulty of providing appropriate sex hormone levels in the gonads even though the basic anatomy is present.[citation needed]

See also[edit]

References[edit]

  1. ^ Simard J, Moisan AM, Morel Y (August 2002). "Congenital adrenal hyperplasia due to 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase deficiency". Semin. Reprod. Med. 20 (3): 255–76. doi:10.1055/s-2002-35373. PMID 12428206. S2CID 260317292.
  • ^ Congenital Adrenal Hyperplasia, P Stewart, Chapter 14, Section IV, Williams Textbook of Endocrinology, 11th edition, Elsevier, 2008, p. 485-494.
  • ^ Hattori N, Ishihara T, Moridera K, Hino M, Ikekubo K, Kurahachi H (February 1993). "A case of late-onset congenital adrenal hyperplasia due to partial 3 beta-hydroxysteroid dehydrogenase deficiency". Endocrine Journal. 40 (1): 107–9. doi:10.1507/endocrj.40.107. PMID 7951484.
  • ^ Qureshi, Mohammad; Qureshi, Hadiyah N. (2021). "Abstract #1003768: Non Classic Congenital Adrenal Hyperplasia Due to Late Onset 3 Beta-Hydroxysteroid Dehydrogenase Deficiency Diagnosed as a Work up of Infertility and Adrenal Adenoma". Endocrine Practice. 27 (6): S14–S15. doi:10.1016/j.eprac.2021.04.501. S2CID 236359665.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Congenital_adrenal_hyperplasia_due_to_3β-hydroxysteroid_dehydrogenase_deficiency&oldid=1182727372"

    Categories: 
    Autosomal recessive disorders
    Congenital disorders of endocrine system
    Endocrine-related cutaneous conditions
    Intersex variations
    Cholesterol and steroid metabolism disorders
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles to be expanded from February 2017
    All articles to be expanded
    Articles with empty sections from February 2017
    All articles with empty sections
    Articles using small message boxes
    All articles with unsourced statements
    Articles with unsourced statements from August 2020
    Articles with unsourced statements from October 2021
    Articles with unsourced statements from September 2021
     



    This page was last edited on 31 October 2023, at 01:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki