Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Acidbase reactions  





2 Strength of conjugates  





3 Identifying conjugate acidbase pairs  





4 Applications  





5 Table of acids and their conjugate bases  





6 Table of bases and their conjugate acids  





7 See also  





8 References  





9 External links  














Conjugate (acid-base theory)






العربية
Čeština
Dansk
Ελληνικά
Español
فارسی
Français
Gaeilge

ि
Bahasa Indonesia
Italiano
עברית

Nederlands
Norsk bokmål
Português
Slovenčina
کوردی
Suomi
Svenska
Taqbaylit

Türkçe
اردو
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 

(Redirected from Conjugate acid)

Aconjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton (H+) to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reverse reaction. On the other hand, a conjugate base is what remains after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a substance formed by the removal of a proton from an acid, as it can gain a hydrogen ion in the reverse reaction. [1] Because some acids can give multiple protons, the conjugate base of an acid may itself be acidic.

In summary, this can be represented as the following chemical reaction:

Johannes Nicolaus Brønsted and Martin Lowry introduced the Brønsted–Lowry theory, which said that any compound that can give a proton to another compound is an acid, and the compound that receives the proton is a base. A proton is a subatomic particle in the nucleus with a unit positive electrical charge. It is represented by the symbol H+ because it has the nucleus of a hydrogen atom,[2] that is, a hydrogen cation.

Acation can be a conjugate acid, and an anion can be a conjugate base, depending on which substance is involved and which acid–base theory is used. The simplest anion which can be a conjugate base is the free electron in a solution whose conjugate acid is the atomic hydrogen.

Acid–base reactions[edit]

In an acid–base reaction, an acid and a base react to form a conjugate base and a conjugate acid respectively. The acid loses a proton and the base gains a proton. In diagrams which indicate this, the new bond formed between the base and the proton is shown by an arrow that starts on an electron pair from the base and ends at the hydrogen ion (proton) that will be transferred: In this case, the water molecule is the conjugate acid of the basic hydroxide ion after the latter received the hydrogen ion from ammonium. On the other hand, ammonia is the conjugate base for the acidic ammonium after ammonium has donated a hydrogen ion to produce the water molecule. Also, OH can be considered as the conjugate base of H
2
O
, since the water molecule donates a proton to give NH+
4
in the reverse reaction. The terms "acid", "base", "conjugate acid", and "conjugate base" are not fixed for a certain chemical substance but can be swapped if the reaction taking place is reversed.

Strength of conjugates[edit]

The strength of a conjugate acid is proportional to its splitting constant. A stronger conjugate acid will split more easily into its products, "push" hydrogen protons away and have a higher equilibrium constant. The strength of a conjugate base can be seen as its tendency to "pull" hydrogen protons towards itself. If a conjugate base is classified as strong, it will "hold on" to the hydrogen proton when dissolved and its acid will not split.

If a chemical is a strong acid, its conjugate base will be weak.[3] An example of this case would be the splitting of hydrochloric acid HCl in water. Since HCl is a strong acid (it splits up to a large extent), its conjugate base (Cl
) will be weak. Therefore, in this system, most H+
will be hydronium ions H
3
O+
instead of attached to Cl anions and the conjugate bases will be weaker than water molecules.

On the other hand, if a chemical is a weak acid its conjugate base will not necessarily be strong. Consider that ethanoate, the conjugate base of ethanoic acid, has a base splitting constant (Kb) of about 5.6×10−10, making it a weak base. In order for a species to have a strong conjugate base it has to be a very weak acid, like water.

Identifying conjugate acid–base pairs[edit]

To identify the conjugate acid, look for the pair of compounds that are related. The acid–base reaction can be viewed in a before and after sense. The before is the reactant side of the equation, the after is the product side of the equation. The conjugate acid in the after side of an equation gains a hydrogen ion, so in the before side of the equation the compound that has one less hydrogen ion of the conjugate acid is the base. The conjugate base in the after side of the equation lost a hydrogen ion, so in the before side of the equation, the compound that has one more hydrogen ion of the conjugate base is the acid.

Consider the following acid–base reaction:

HNO
3
+ H
2
O
H
3
O+
+ NO
3

Nitric acid (HNO
3
) is an acid because it donates a proton to the water molecule and its conjugate baseisnitrate (NO
3
). The water molecule acts as a base because it receives the hydrogen cation (proton) and its conjugate acid is the hydronium ion (H
3
O+
).

Equation Acid Base Conjugate base Conjugate acid
HClO
2
+ H
2
O
ClO
2
+ H
3
O+
HClO
2
H
2
O
ClO
2
H
3
O+
ClO
+ H
2
O
HClO + OH
H
2
O
ClO
OH
HClO
HCl + H
2
PO
4
Cl
+ H
3
PO
4
HCl H
2
PO
4
Cl
H
3
PO
4

Applications[edit]

One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications. For example, besides buffers being used in lab processes, human blood acts as a buffer to maintain pH. The most important buffer in our bloodstream is the carbonic acid-bicarbonate buffer, which prevents drastic pH changes when CO
2
is introduced. This functions as such:

Furthermore, here is a table of common buffers.

Buffering agent pKa Useful pH range
Citric acid 3.13, 4.76, 6.40 2.1 - 7.4
Acetic acid 4.8 3.8 - 5.8
KH2PO4 7.2 6.2 - 8.2
CHES 9.3 8.3–10.3
Borate 9.24 8.25 - 10.25

A second common application with an organic compound would be the production of a buffer with acetic acid. If acetic acid, a weak acid with the formula CH
3
COOH
, was made into a buffer solution, it would need to be combined with its conjugate base CH
3
COO
in the form of a salt. The resulting mixture is called an acetate buffer, consisting of aqueous CH
3
COOH
and aqueous CH
3
COONa
. Acetic acid, along with many other weak acids, serve as useful components of buffers in different lab settings, each useful within their own pH range.

Ringer's lactate solution is an example where the conjugate base of an organic acid, lactic acid, CH
3
CH(OH)CO
2
is combined with sodium, calcium and potassium cations and chloride anions in distilled water[4] which together form a fluid which is isotonic in relation to human blood and is used for fluid resuscitation after blood loss due to trauma, surgery, or a burn injury.[5]

Table of acids and their conjugate bases[edit]

Below are several examples of acids and their corresponding conjugate bases; note how they differ by just one proton (H+ ion). Acid strength decreases and conjugate base strength increases down the table.

Acid Conjugate base
H
2
F+
Fluoronium ion
HFHydrogen fluoride
HCl Hydrochloric acid Cl Chloride ion
H2SO4 Sulfuric acid HSO
4
Hydrogen sulfate ion (bisulfate ion)
HNO3 Nitric acid NO
3
Nitrate ion
H3O+ Hydronium ion H2OWater
HSO
4
Hydrogen sulfate ion
SO2−
4
Sulfate ion
H3PO4 Phosphoric acid H2PO
4
Dihydrogen phosphate ion
CH3COOH Acetic acid CH3COO Acetate ion
HFHydrofluoric acid F Fluoride ion
H2CO3 Carbonic acid HCO
3
Hydrogen carbonate ion
H2SHydrosulfuric acid HS Hydrosulfide ion
H2PO
4
Dihydrogen phosphate ion
HPO2−
4
Hydrogen phosphate ion
NH+
4
Ammonium ion
NH3 Ammonia
H2O Water (pH=7) OH Hydroxide ion
HCO
3
Hydrogencarbonate (bicarbonate) ion
CO2−
3
Carbonate ion

Table of bases and their conjugate acids[edit]

In contrast, here is a table of bases and their conjugate acids. Similarly, base strength decreases and conjugate acid strength increases down the table.

Base Conjugate acid
C
2
H
5
NH
2
Ethylamine
C
2
H
5
NH+
3
Ethylammonium ion
CH
3
NH
2
Methylamine
CH
3
NH+
3
Methylammonium ion
NH
3
Ammonia
NH+
4
Ammonium ion
C
5
H
5
N
Pyridine
C
5
H
6
N+
Pyridinium
C
6
H
5
NH
2
Aniline
C
6
H
5
NH+
3
Phenylammonium ion
C
6
H
5
CO
2
Benzoate ion
C
6
H
6
CO
2
Benzoic acid
F
Fluoride ion
HF Hydrogen fluoride
PO3−
4
Phosphate ion
HPO2−
4
Hydrogen phosphate ion
OH Hydroxide ion H2OWater (neutral, pH7)
HCO
3
Bicarbonate
H
2
CO
3
Carbonic acid
CO2−
3
Carbonate ion
HCO
3
Bicarbonate
Br
Bromide ion
HBr Hydrogen bromide
HPO2−
4
Hydrogen phosphate
H
2
PO
4
Dihydrogen phosphate ion
Cl
Chloride ion
HCl Hydrogen chloride
H
2
O
Water
H
3
O+
Hydronium ion
Nitrite ion Nitrous acid

See also[edit]

References[edit]

  1. ^ Zumdahl, Stephen S., & Zumdahl, Susan A. Chemistry. Houghton Mifflin, 2007, ISBN 0618713700
  • ^ "Brønsted–Lowry theory | chemistry". Encyclopedia Britannica. Retrieved 25 February 2020.
  • ^ "Strength of Conjugate Acids and Bases Chemistry Tutorial". www.ausetute.com.au. Retrieved 25 February 2020.
  • ^ British national formulary: BNF 69 (69 ed.). British Medical Association. 2015. p. 683. ISBN 9780857111562.
  • ^ Pestana, Carlos (7 April 2020). Pestana's Surgery Notes (Fifth ed.). Kaplan Medical Test Prep. pp. 4–5. ISBN 978-1506254340.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Conjugate_(acid-base_theory)&oldid=1203940778"

    Category: 
    Acidbase chemistry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from April 2021
    Webarchive template wayback links
     



    This page was last edited on 6 February 2024, at 00:59 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki