Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal definition  





2 Description for Morse functions  





3 References  














Reeb graph






Deutsch
Español
Français
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Contour tree)

Reeb graph of the height function on the torus.

AReeb graph[1] (named after Georges ReebbyRené Thom) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[2] According to [3] a similar concept was introduced by G.M. Adelson-Velskii and A.S. Kronrod and applied to analysis of Hilbert's thirteenth problem.[4] Proposed by G. Reeb as a tool in Morse theory,[5] Reeb graphs are the natural tool to study multivalued functional relationships between 2D scalar fields , , and arising from the conditions and , because these relationships are single-valued when restricted to a region associated with an individual edge of the Reeb graph. This general principle was first used to study neutral surfacesinoceanography.[6]

Reeb graphs have also found a wide variety of applications in computational geometry and computer graphics,[1][7] including computer aided geometric design, topology-based shape matching,[8][9][10] topological data analysis,[11] topological simplification and cleaning, surface segmentation [12] and parametrization, efficient computation of level sets, neuroscience,[13] and geometrical thermodynamics.[3] In a special case of a function on a flat space (technically a simply connected domain), the Reeb graph forms a polytree and is also called a contour tree.[14]

Level set graphs help statistical inference related to estimating probability density functions and regression functions, and they can be used in cluster analysis and function optimization, among other things. [15]

Formal definition[edit]

Given a topological space X and a continuous function fX → R, define an equivalence relation ~ on X where p~q whenever p and q belong to the same connected component of a single level set f−1(c) for some real c. The Reeb graph is the quotient space X /~ endowed with the quotient topology.

Generally, this quotient space does not have the structure of a finite graph. Even for a smooth function on a smooth manifold, the Reeb graph can be not one-dimensional and even non-Hausdorff space.[16]

In fact, the compactness of the manifold is crucial: The Reeb graph of a smooth function on a closed manifold is a one-dimensional Peano continuum that is homotopy equivalent to a finite graph.[16] In particular, the Reeb graph of a smooth function on a closed manifold with a finite number of critical values---which is the case of Morse functions, Morse-Bott functions or functions with isolated critical points---has the structure of a finite graph.[17]

Description for Morse functions[edit]

Iff is a Morse function with distinct critical values, the Reeb graph can be described more explicitly. Its nodes, or vertices, correspond to the critical level sets f−1(c). The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set f−1(t) as t passes through the critical value c. For example, if c is a minimum or a maximum of f, a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has degree 1. If c is a saddle point of index 1 and two components of f−1(t) merge at t = cast increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y"; the same reasoning applies if the index of c is dim X−1 and a component of f−1(c) splits into two.

References[edit]

  1. ^ a b Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien, 1991. Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11(5), pp.66-78
  • ^ Harish Doraiswamy, Vijay Natarajan, Efficient algorithms for computing Reeb graphs, Computational Geometry 42 (2009) 606–616
  • ^ a b Gorban, Alexander N. (2013). "Thermodynamic Tree: The Space of Admissible Paths". SIAM Journal on Applied Dynamical Systems. 12 (1): 246–278. arXiv:1201.6315. doi:10.1137/120866919. S2CID 5706376.
  • ^ G. M. Adelson-Velskii, A. S. Kronrod, About level sets of continuous functions with partial derivatives, Dokl. Akad. Nauk SSSR, 49 (4) (1945), pp. 239–241.
  • ^ G. Reeb, Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
  • ^ Stanley, Geoffrey J. (June 2019). "Neutral surface topology". Ocean Modelling. 138: 88–106. arXiv:1903.10091. Bibcode:2019OcMod.138...88S. doi:10.1016/j.ocemod.2019.01.008. S2CID 85502820.
  • ^ Y. Shinagawa and T.L. Kunii, 1991. Constructing a Reeb graph automatically from cross sections. IEEE Computer Graphics and Applications, 11(6), pp.44-51.
  • ^ Pascucci, Valerio; Scorzelli, Giorgio; Bremer, Peer-Timo; Mascarenhas, Ajith (2007). "Robust On-line Computation of Reeb Graphs: Simplicity and Speed" (PDF). ACM Transactions on Graphics. 26 (3): 58.1–58.9. doi:10.1145/1276377.1276449.
  • ^ M. Hilaga, Y. Shinagawa, T. Kohmura and T.L. Kunii, 2001, August. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 203-212). ACM.
  • ^ Tung, Tony; Schmitt, Francis (2005). "The Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes". International Journal of Shape Modeling. 11 (1): 91–120. doi:10.1142/S0218654305000748.
  • ^ "the Topology ToolKit".
  • ^ Hajij, Mustafa; Rosen, Paul (2020). "An Efficient Data Retrieval Parallel Reeb Graph Algorithm". Algorithms. 13 (10): 258. arXiv:1810.08310. doi:10.3390/a13100258.
  • ^ Shailja, S; Zhang, Angela; Manjunath, B. S. (2021). "A Computational Geometry Approach for Modeling Neuronal Fiber Pathways". Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Lecture Notes in Computer Science. Lecture Notes in Computer Science. 12908: 175–185. doi:10.1007/978-3-030-87237-3_17. ISBN 978-3-030-87236-6. PMC 8560085. PMID 34729555.
  • ^ Carr, Hamish; Snoeyink, Jack; Axen, Ulrike (2000), "Computing contour trees in all dimensions", Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 918–926, ISBN 9780898714531.
  • ^ Klemelä, Jussi (2018). "Level set tree methods". Wiley Interdisciplinary Reviews: Computational Statistics. 10 (5): e1436. doi:10.1002/wics.1436. S2CID 58864566.
  • ^ a b I. Gelbukh, 2024. On the topology of the Reeb graph. Publicationes Mathematicae Debrecen, 104(3-4), pp.343-365
  • ^ O. Saeki, 2022. Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not., 11, pp.8740-8768

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Reeb_graph&oldid=1226046293"

    Categories: 
    Graph families
    Application-specific graphs
     



    This page was last edited on 28 May 2024, at 07:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki