Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Related structures  





2 Enumeration  





3 Sumner's conjecture  





4 Applications  





5 See also  





6 Notes  





7 References  














Polytree






Deutsch
Español
Français
Português
ி
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A polytree

Inmathematics, and more specifically in graph theory, a polytree[1] (also called directed tree,[2] oriented tree[3]orsingly connected network[4]) is a directed acyclic graph whose underlying undirected graph is a tree. In other words, if we replace its directed edges with undirected edges, we obtain an undirected graph that is both connected and acyclic.

Apolyforest (ordirected forestororiented forest) is a directed acyclic graph whose underlying undirected graph is a forest. In other words, if we replace its directed edges with undirected edges, we obtain an undirected graph that is acyclic.

A polytree is an example of an oriented graph.

The term polytree was coined in 1987 by Rebane and Pearl.[5]

Related structures[edit]

Enumeration[edit]

The number of distinct polytrees on unlabeled nodes, for , is

1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, 492180, ... (sequence A000238 in the OEIS).

Sumner's conjecture[edit]

Sumner's conjecture, named after David Sumner, states that tournaments are universal graphs for polytrees, in the sense that every tournament with vertices contains every polytree with vertices as a subgraph. Although it remains unsolved, it has been proven for all sufficiently large values of .[8]

Applications[edit]

Polytrees have been used as a graphical model for probabilistic reasoning.[1] If a Bayesian network has the structure of a polytree, then belief propagation may be used to perform inference efficiently on it.[4][5]

The contour tree of a real-valued function on a vector space is a polytree that describes the level sets of the function. The nodes of the contour tree are the level sets that pass through a critical point of the function and the edges describe contiguous sets of level sets without a critical point. The orientation of an edge is determined by the comparison between the function values on the corresponding two level sets.[9]

See also[edit]

Notes[edit]

  • ^ Deo (1974), p. 206.
  • ^ Harary & Sumner (1980); Simion (1991).
  • ^ a b Kim & Pearl (1983).
  • ^ a b Rebane & Pearl (1987).
  • ^ Trotter & Moore (1977).
  • ^ Ruskey (1989).
  • ^ Kühn, Mycroft & Osthus (2011).
  • ^ Carr, Snoeyink & Axen (2000).
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Polytree&oldid=1183195403"

    Categories: 
    Trees (graph theory)
    Directed acyclic graphs
     



    This page was last edited on 2 November 2023, at 19:39 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki