Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Energy  





1.2  Computational physics  





1.3  Mathematics  







2 Examples  



2.1  In hydraulic engineering  





2.2  Irreversible processes  





2.3  Waves or oscillations  







3 History  





4 See also  





5 References  














Dissipation






العربية
Български
Bosanski
Čeština
Deutsch
Español
فارسی
Français

Italiano
Қазақша
Lietuvių
Nederlands

Norsk bokmål
Norsk nynorsk
Polski
Português
Русский
Simple English
Svenska
Українська
اردو

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inthermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form. For example, transfer of energy as heat is dissipative because it is a transfer of energy other than by thermodynamic work or by transfer of matter, and spreads previously concentrated energy. Following the second law of thermodynamics, in conduction and radiation from one body to another, the entropy varies with temperature (reduces the capacity of the combination of the two bodies to do work), but never decreases in an isolated system.

Inmechanical engineering, dissipation is the irreversible conversion of mechanical energy into thermal energy with an associated increase in entropy.[1]

Processes with defined local temperature produce entropy at a certain rate. The entropy production rate times local temperature gives the dissipated power. Important examples of irreversible processes are: heat flow through a thermal resistance, fluid flow through a flow resistance, diffusion (mixing), chemical reactions, and electric current flow through an electrical resistance (Joule heating).

Definition[edit]

Dissipative thermodynamic processes are essentially irreversible because they produce entropy. Planck regarded friction as the prime example of an irreversible thermodynamic process.[2] In a process in which the temperature is locally continuously defined, the local density of rate of entropy production times local temperature gives the local density of dissipated power.[definition needed]

A particular occurrence of a dissipative process cannot be described by a single individual Hamiltonian formalism. A dissipative process requires a collection of admissible individual Hamiltonian descriptions, exactly which one describes the actual particular occurrence of the process of interest being unknown. This includes friction and hammering, and all similar forces that result in decoherency of energy—that is, conversion of coherent or directed energy flow into an indirected or more isotropic distribution of energy.

Energy[edit]

"The conversion of mechanical energy into heat is called energy dissipation." – François Roddier[3] The term is also applied to the loss of energy due to generation of unwanted heat in electric and electronic circuits.

Computational physics[edit]

Incomputational physics, numerical dissipation (also known as "Numerical diffusion") refers to certain side-effects that may occur as a result of a numerical solution to a differential equation. When the pure advection equation, which is free of dissipation, is solved by a numerical approximation method, the energy of the initial wave may be reduced in a way analogous to a diffusional process. Such a method is said to contain 'dissipation'. In some cases, "artificial dissipation" is intentionally added to improve the numerical stability characteristics of the solution.[4]

Mathematics[edit]

A formal, mathematical definition of dissipation, as commonly used in the mathematical study of measure-preserving dynamical systems, is given in the article wandering set.

Examples[edit]

In hydraulic engineering[edit]

Dissipation is the process of converting mechanical energy of downward-flowing water into thermal and acoustical energy. Various devices are designed in stream beds to reduce the kinetic energy of flowing waters to reduce their erosive potential on banks and river bottoms. Very often, these devices look like small waterfallsorcascades, where water flows vertically or over riprap to lose some of its kinetic energy.

Irreversible processes[edit]

Important examples of irreversible processes are:

  1. Heat flow through a thermal resistance
  2. Fluid flow through a flow resistance
  3. Diffusion (mixing)
  4. Chemical reactions[5][6]
  5. Electrical current flow through an electrical resistance (Joule heating).

Waves or oscillations[edit]

Wavesoroscillations, lose energy over time, typically from frictionorturbulence. In many cases, the "lost" energy raises the temperature of the system. For example, a wave that loses amplitude is said to dissipate. The precise nature of the effects depends on the nature of the wave: an atmospheric wave, for instance, may dissipate close to the surface due to friction with the land mass, and at higher levels due to radiative cooling.

History[edit]

The concept of dissipation was introduced in the field of thermodynamics by William Thomson (Lord Kelvin) in 1852.[7] Lord Kelvin deduced that a subset of the above-mentioned irreversible dissipative processes will occur unless a process is governed by a "perfect thermodynamic engine". The processes that Lord Kelvin identified were friction, diffusion, conduction of heat and the absorption of light.

See also[edit]

References[edit]

  1. ^ Escudier, Marcel; Atkins, Tony (2019). A Dictionary of Mechanical Engineering (2 ed.). Oxford University Press. doi:10.1093/acref/9780198832102.001.0001. ISBN 978-0-19-883210-2.
  • ^ Planck, M. (1926). "Über die Begründung des zweiten Hauptsatzes der Thermodynamik", Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 453—463.
  • ^ Roddier F., Thermodynamique de l'évolution (The Thermodynamics of Evolution), parole éditions, 2012
  • ^ Thomas, J.W. Numerical Partial Differential Equation: Finite Difference Methods. Springer-Verlag. New York. (1995)
  • ^ Glansdorff, P., Prigogine, I. (1971). Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley-Interscience, London, 1971, ISBN 0-471-30280-5, p. 61.
  • ^ Eu, B.C. (1998). Nonequilibrium Thermodynamics: Ensemble Method, Kluwer Academic Publications, Dordrecht, ISBN 0-7923-4980-6, p. 49,
  • ^ W. Thomson On the universal tendency in nature to the dissipation of mechanical energy Philosophical Magazine, Ser. 4, p. 304 (1852).

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Dissipation&oldid=1229699944"

    Categories: 
    Thermodynamic processes
    Non-equilibrium thermodynamics
    Dynamical systems
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from July 2021
     



    This page was last edited on 18 June 2024, at 07:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki