Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Derivation  



1.1  Extension of the ideal fluid energy equation  





1.2  Equation for entropy production  







2 Application  





3 See also  





4 References  





5 Further reading  














General equation of heat transfer






Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Influid dynamics, the general equation of heat transfer is a nonlinear partial differential equation describing specific entropy production in a Newtonian fluid subject to thermal conduction and viscous forces:[1][2]

where is the specific entropy, is the fluid's density, is the fluid's temperature, is the material derivative, is the thermal conductivity, is the dynamic viscosity, is the second Lamé parameter, is the flow velocity, is the del operator used to characterize the gradient and divergence, and is the Kronecker delta.

If the flow velocity is negligible, the general equation of heat transfer reduces to the standard heat equation. It may also be extended to rotating, stratified flows, such as those encountered in geophysical fluid dynamics.[3]

Derivation[edit]

Extension of the ideal fluid energy equation[edit]

For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations:

where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by:
The energy of a unit volume of the fluid is the sum of the kinetic energy and the internal energy , where is the specific internal energy. In an ideal fluid, as described by the Euler equations, the conservation of energy is defined by the equation:
where is the specific enthalpy. However, for conservation of energy to hold in a viscous fluid subject to thermal conduction, the energy flux due to advection must be supplemented by a heat flux given by Fourier's law and a flux due to internal friction . Then the general equation for conservation of energy is:

Equation for entropy production[edit]

Note that the thermodynamic relations for the internal energy and enthalpy are given by:

We may also obtain an equation for the kinetic energy by taking the dot product of the Navier-Stokes equation with the flow velocity to yield:
The second term on the righthand side may be expanded to read:
With the aid of the thermodynamic relation for enthalpy and the last result, we may then put the kinetic energy equation into the form:
Now expanding the time derivative of the total energy, we have:
Then by expanding each of these terms, we find that:
And collecting terms, we are left with:
Now adding the divergence of the heat flux due to thermal conduction to each side, we have that:
However, we know that by the conservation of energy on the lefthand side is equal to zero, leaving us with:
The product of the viscous stress tensor and the velocity gradient can be expanded as:
Thus leading to the final form of the equation for specific entropy production:
In the case where thermal conduction and viscous forces are absent, the equation for entropy production collapses to - showing that ideal fluid flow is isentropic.

Application[edit]

This equation is derived in Section 49, at the opening of the chapter on "Thermal Conduction in Fluids" in the sixth volume of L.D. Landau and E.M. Lifshitz's Course of Theoretical Physics.[1] It might be used to measure the heat transfer and air flow in a domestic refrigerator,[4] to do a harmonic analysis of regenerators,[5] or to understand the physics of glaciers.[6]

See also[edit]

References[edit]

  1. ^ a b Landau, L.D.; Lifshitz, E.M. (1987). Fluid Mechanics (PDF). Course of Theoretical Physics. Vol. 6 (2nd ed.). Butterworth-Heinemann. pp. 192–194. ISBN 978-0-7506-2767-2. OCLC 936858705.
  • ^ Kundu, P.K.; Cohen, I.M.; Dowling, D.R. (2012). Fluid Mechanics (5th ed.). Academic Press. pp. 123–125. ISBN 978-0-12-382100-3.
  • ^ Pedlosky, J. (2003). Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer. p. 19. ISBN 978-3540003403.
  • ^ Laguerre, Onrawee (2010-05-21), Farid, Mohammed M. (ed.), "Heat Transfer and Air Flow in a Domestic Refrigerator", Mathematical Modeling of Food Processing (1 ed.), CRC Press, pp. 453–482, doi:10.1201/9781420053548-20, ISBN 978-0-429-14217-8, retrieved 2023-05-07
  • ^ Swift, G. W.; Wardt, W. C. (October–December 1996). "Simple Harmonic Analysis of Regenerators". Journal of Thermophysics and Heat Transfer. 10 (4): 652–662. doi:10.2514/3.842.
  • ^ Cuffey, K. M. (2010). The physics of glaciers. W. S. B. Paterson (4th ed.). Burlington, MA. ISBN 978-0-12-369461-4. OCLC 488732494.{{cite book}}: CS1 maint: location missing publisher (link)
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=General_equation_of_heat_transfer&oldid=1153983339"

    Categories: 
    Partial differential equations
    Heat transfer
    Heat conduction
    Equations of fluid dynamics
    Hidden categories: 
    CS1 maint: location missing publisher
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 9 May 2023, at 14:20 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki