Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Detection of cancer using nuclear magnetic resonance (NMR)  





2 Development of electroporation and electrofusion  





3 Works on biophotonics probes  





4 Works on fundamental physics  





5 Books & book chapters  





6 References  














Donald C. Chang







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Donald C. Chang
Occupationprofessor
Known forspin-echo NMR, electroporation, biophysics, quantum physics
Academic background
Alma materRice University, National Taiwan University
Doctoral advisorHarold E. Rorschach Jr.
Academic work
InstitutionsRice University, Baylor College of Medicine, Marine Biological Lab at Woods Hole, Hong Kong University of Science & Technology

Donald Choy Chang (traditional Chinese: 張東才; simplified Chinese: 张东才; 1942) is a founding professor of the Hong Kong University of Science and Technology (HKUST). He was also the founding President of the Biophysical Society of Hong Kong.[1] He is currently Professor Emeritus and Adjunct Professor in HKUST. Chang has wide research interests. He was an experimental physicist by training; but his publication ranges from nuclear magnetic resonance,[2][3] biophysics[4][5] and quantum physics.[6][7] He was elected American Physical Society Fellow in 2023. [8]

Detection of cancer using nuclear magnetic resonance (NMR)

[edit]

Chang is an early pioneer in the study of the physical properties of water in cells using spin-echo nuclear magnetic resonance (NMR) techniques. When Donald Chang was working in the Physics Department at Rice University, he built a home-made NMR spectrometer to measure the relaxation times (T1 and T2) of water in normal cells/tissues, cancer cells and simply in free water samples.

His major collaborator at that time was the physiologist, C.F. Hazlewood, in the Baylor College of Medicine. Many publications related to this work were published with Hazlewood. Chang and his team gave the first time report that the relaxation time of cellular water (heart muscle cells in this case) is much shorter than the relaxation time of free water in 1971.[9] Also, their experiments suggested that such shortening of relaxation times in cellular water is not due to the diffusion limitation as was believed at that time.[2]

In 1972, they used the same technique to test the relaxation times for normal cells and cancer cells. They found that for breast tissue cells evolving from normal cells to pre-tumor cell (pre-neoplastic) and finally to tumor cells, their water relaxation times gradually increased.[3][10] This finding means it is possible to use NMR to detect pre-cancer cells and cancer cells. In 1973, Paul Lauterbur published a paper in Nature (1973) [11] suggesting that one can use a magnetic field gradient to differentiate water molecules in different location of a sample. This idea triggered the development of the MRI (magnetic resonance imaging) technique. And it is widely used today in detecting cancer/tumors. Later, Lauterbur was awarded the Nobel Prize in 2003 for this work.

Development of electroporation and electrofusion

[edit]

In the early 1980s, researchers found that cell membranes can be transiently permeabilized using strong electrical pulses. During this “opening up”, many macro-molecules, including DNA, RNA and some proteins can enter the cells. After some time, the cell membrane will seal again. This is called “electroporation”.[12]

Chang invented a technique using a pulsed radio frequency electric field to achieve the electroporation, which is much more efficient in gene transfection and cell fusion.[13][14] (The “electrofusion” uses roughly the same technique as electroporation, the difference is that the electrofusion involves the fusion of two cells).

At 1980s, the concept of membrane "pore" was still a theory, but not visualized; the physical properties of the electroporation was not well understood. For example: What does the pore look like? What is the size of pores on the membrane? How long is the “opening up” time window? Chang and his collaborator T. S. Reese used a technique called “rapid freezing-fracture electron microscopy” to take the snapshots of this process. For the first time, he showed the structure of the pores induced by the external electric field.[15][16] This study provides the first structural evidence for the existence of the previously hypothesized "electropores" and was reported in the cover story of the July 1990 issue of the Biophysical Journal.

Works on biophotonics probes

[edit]

Green fluorescent protein (GFP) and Fluorescent Resonance Energy Transfer (FRET) are two important optical probes/sensors discovered and developed in late 20th century. GFP was first isolated by Shimomura in 1962 in the Woods Hole Marine Biological Lab. After the GPF gene was cloned, it became a very handy tool for visualization of molecules in the cells. Chang collaborated with Roger Tsien's team and fused the GFP gene with calmodulin (CaM) gene, and injected this GFP-labelled CaM DNA into cells. After this fusion gene was expressed, the dynamic changes of the CaM-GFP protein can be recorded.[17]

Works on fundamental physics

[edit]

Since the last decade, many of Chang’s work are focusing on some fundamental questions in physics. One of his works examined the physical meaning of the Planck constant based on the Maxwell theory.[18] The Planck constant h is one of the most important universal constants. But the physical nature of h is not well understood. The Planck's relation was originally derived based on phenomenological considerations rather than from first principles.[19] Chang’s paper showed that by modeling the photon as a wave packet of electromagnetic radiation, the energy and momentum can be calculated directly based on the Maxwell’s theory. Using the assumption that the emission and transmission of a photon follows the principle of all-or-none, he found that the energy of the wave packet is proportional to its oscillation frequency. Follow this work, the Planck constant is derived explicitly. It suggests that the Planck constant is closely related to the physical properties of the vacuum.[18]

Another major work of Chang is a proposed experimental testing of whether there is a resting frame in the universe by measuring the particle masses.[20] There is an unsolved conflict between the postulate of relativity and the quantum theories used in cosmology and particle physics today: The former assumes the universe does not have a resting frame, but the latter implies a resting frame exists. The famous Michelson–Morley experiment tested that for light, all inertial frames are equivalent, i.e., there seems to be no resting frame for light propagation. However, it has never been tested whether the massive charged particles follow the same law. Chang's proposal is to precisely measure the particles' mass of two electrons moving in opposite directions. If a difference in mass of the two electrons is detected, it means not all inertial frames are the same for massive particles; if no difference is detected, it means all inertial frames are also the same for massive particles.[21][22]

In recent years, Chang was actively involved in studying the foundation of quantum physics.[23][24][25] His work was recently published by Springer/Nature as a monograph entitled "On the Wave Nature of Matter: A New Approach to Reconciling Quantum Mechanics and Relativity".

This book introduces a new theory for explaining the origin of matter and the physical basis of quantum mechanics. This hypothesis is called the "quantum wave model," which suggests that matter is made of waves. More specifically, it is proposed that the vacuum is a dielectric medium according to Maxwell's theory, and quantum particles are quantized excitation waves of the vacuum.[26] It can be shown that the existing quantum wave equations, including the Klein-Gordon equation, the Dirac equation, and the Schrödinger equation, can be derived directly based on the mechanism of vacuum excitation. This model not only provides a physical basis for explaining the phenomenon of wave-particle duality, it can also explain why particles can be created in the vacuum and why energy can be converted into matter.[26]

Books & book chapters

[edit]

References

[edit]
  • ^ a b Chang, D. C.; Hazlewood, C. F.; Nichols, B. L.; Rorschach, H. E. (1972). "Spin-echo studies on cellular water". Nature. 235 (5334): 170–171. arXiv:1412.6003. Bibcode:1972Natur.235..170C. doi:10.1038/235170a0. PMID 4551228. S2CID 4167213.
  • ^ a b "Nuclear Physics Seen Aiding In Breast Cancer Detection". Atlantic City Press. March 1972.
  • ^ Chang, Chassy, Saunders and Sowers (1992). Guide to Electroporation and Electrofusion. San Diego: Academic Press. ISBN 978-0-12-168040-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ Donald, Chang; Meng, C. (1995). "A localized elevation of cytosolic free calcium is associated with cytokinesis in zebrafish embryo". J. Cell Biol. 131 (6): 1539–1545. doi:10.1083/jcb.131.6.1539. PMC 2120692. PMID 8522610.
  • ^ Chang, Donald (Aug 2018). "A quantum mechanical interpretation of gravitational redshift of electromagnetic wave". Optik. 174: 636–641. doi:10.1016/j.ijleo.2018.08.127. S2CID 126341445.
  • ^ Chang, Donald C. (2020). "A quantum interpretation of the physical basis of mass–energy equivalence" (PDF). Modern Physics Letters B. 34 (18): 2030002–2030273. Bibcode:2020MPLB...3430002C. doi:10.1142/S0217984920300021. S2CID 218848543.
  • ^ "APS Fellow Archive". www.aps.org. Retrieved 2024-03-18.
  • ^ Hazlewood, C. F.; Chang, D. C.; Nichols, B. L.; Rorschach, H. E. (1971). "Interaction of water molecules with macromolecular structures in cardiac muscle". Journal of Molecular and Cellular Cardiology. 2 (1): 51–53. doi:10.1016/0022-2828(71)90078-2. ISSN 0022-2828. PMID 5110317.
  • ^ Hazelwood, C. F.; Chang, D. C.; Medina, D.; Cleveland, G.; Nichols, B. L. (1972). "Distinction between the preneoplastic and neoplastic state of murine mammary glands". Proceedings of the National Academy of Sciences of the United States of America. 69 (6): 1478–1480. arXiv:1403.0914. Bibcode:1972PNAS...69.1478H. doi:10.1073/pnas.69.6.1478. ISSN 0027-8424. PMC 426730. PMID 4504364.
  • ^ Lauterbur, P. C. (1973). "Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance". Nature. 242 (5394): 190–191. Bibcode:1973Natur.242..190L. doi:10.1038/242190a0. ISSN 0028-0836. S2CID 4176060.
  • ^ Chang, Donald C. (2006-09-15), "Electroporation and Electrofusion", in Meyers, Robert A. (ed.), Encyclopedia of Molecular Cell Biology and Molecular Medicine, Wiley-VCH Verlag GmbH & Co. KGaA, doi:10.1002/3527600906.mcb.200300026, ISBN 9783527600908
  • ^ Gallagher, Sean (April 1989). "RF pulses change mammal cells in novel experiments". Genetic Engineering and Biotechnology News. 9 (4).
  • ^ "Method of and apparatus for cell poration and cell fusion using radio frequency electrical pulses". United States Patent and Trademark Office database. Retrieved 12 April 2019.[permanent dead link]
  • ^ Chang, D. C.; Reese, T. S. (1990). "Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy". Biophysical Journal. 58 (1): 1–12. Bibcode:1990BpJ....58....1C. doi:10.1016/S0006-3495(90)82348-1. ISSN 0006-3495. PMC 1280935. PMID 2383626.
  • ^ S. Roberts, "Electroporation: galvanizing cells into action," ''J. NIH Res.,'' vol. 2, pp. 93-94, 1990.
  • ^ Li, C. J.; Heim, R.; Lu, P.; Pu, Y.; Tsien, R. Y.; Chang, D. C. (1999). "Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique" (PDF). Journal of Cell Science. 112 ( Pt 10) (10): 1567–1577. doi:10.1242/jcs.112.10.1567. ISSN 0021-9533. PMID 10212150.
  • ^ a b Chang, Donald C (2017). "Physical interpretation of Planck's constant based on the Maxwell theory". Chinese Physics B. 26 (4): 040301. arXiv:1706.04475. Bibcode:2017ChPhB..26d0301C. doi:10.1088/1674-1056/26/4/040301. ISSN 1674-1056. S2CID 119415586.
  • ^ Slater, John Clarke (1969). Concepts and development of quantum physics. Dover. ISBN 0486622657. OCLC 833138434.
  • ^ Chang, Donald C. (2017). "Is there a resting frame in the universe? A proposed experimental test based on a precise measurement of particle mass". The European Physical Journal Plus. 132 (3): 140. arXiv:1706.05252. Bibcode:2017EPJP..132..140C. doi:10.1140/epjp/i2017-11402-4. ISSN 2190-5444. S2CID 118966045.
  • ^ "Is There a Resting Frame in Universe? | Physics | Sci-News.com". Breaking Science News | Sci-News.com. 23 March 2017. Retrieved 2019-05-02.
  • ^ "Does the universe have a rest frame?". EurekAlert!. Retrieved 2019-05-02.
  • ^ Chang, Donald C (2017). "Physical interpretation of Planck's constant based on the Maxwell theory". Chinese Physics B. 26 (4): 040301. arXiv:1706.04475. Bibcode:2017ChPhB..26d0301C. doi:10.1088/1674-1056/26/4/040301. ISSN 1674-1056.
  • ^ Chang, Donald C. (2021-05-10). "Review on the physical basis of wave–particle duality: Conceptual connection between quantum mechanics and the Maxwell theory". Modern Physics Letters B. 35 (13): 2130004–2130089. Bibcode:2021MPLB...3530004C. doi:10.1142/S0217984921300040. ISSN 0217-9849.
  • ^ Chang, Donald C. (2022-12-30). "A quantum view of photon gravity: The gravitational mass of photon and its implications on previous experimental tests of general relativity". Modern Physics Letters B. 36 (36): 2250179–61. Bibcode:2022MPLB...3650179C. doi:10.1142/S0217984922501792. ISSN 0217-9849.
  • ^ a b Chang, Donald C. (2024). On the Wave Nature of Matter: A New Approach to Reconciling Quantum Mechanics and Relativity. Springer Nature Switzerland. doi:10.1007/978-3-031-48777-4. ISBN 978-3-031-48776-7.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Donald_C._Chang&oldid=1230393897"

    Categories: 
    Living people
    1942 births
    Hong Kong academics
    National Taiwan University alumni
    Rice University alumni
    Fellows of the American Physical Society
    Hidden categories: 
    CS1 maint: multiple names: authors list
    All articles with dead external links
    Articles with dead external links from February 2024
    Articles with permanently dead external links
    CS1: long volume value
    Articles with short description
    Short description matches Wikidata
    Articles with hCards
    Articles containing traditional Chinese-language text
    Articles containing simplified Chinese-language text
     



    This page was last edited on 22 June 2024, at 13:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki