Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal statement  





2 History and related results  





3 See also  





4 References  














Donsker's theorem






Català
Deutsch
Français
עברית
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Donsker's invariance principle for simple random walkon.

Inprobability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem for empirical distribution functions. Specifically, the theorem states that an appropriately centered and scaled version of the empirical distribution function converges to a Gaussian process.

Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by

The central limit theorem asserts that converges in distribution to a standard Gaussian random variable as. Donsker's invariance principle[1][2] extends this convergence to the whole function . More precisely, in its modern form, Donsker's invariance principle states that: As random variables taking values in the Skorokhod space , the random function converges in distribution to a standard Brownian motion as

Donsker-Skorokhod-Kolmogorov theorem for uniform distributions.
Donsker-Skorokhod-Kolmogorov theorem for normal distributions

Formal statement[edit]

Let Fn be the empirical distribution function of the sequence of i.i.d. random variables with distribution function F. Define the centered and scaled version of Fnby

indexed by x ∈ R. By the classical central limit theorem, for fixed x, the random variable Gn(x) converges in distribution to a Gaussian (normal) random variable G(x) with zero mean and variance F(x)(1 − F(x)) as the sample size n grows.

Theorem (Donsker, Skorokhod, Kolmogorov) The sequence of Gn(x), as random elements of the Skorokhod space , converges in distribution to a Gaussian process G with zero mean and covariance given by

The process G(x) can be written as B(F(x)) where B is a standard Brownian bridge on the unit interval.

History and related results[edit]

Kolmogorov (1933) showed that when Fiscontinuous, the supremum and supremum of absolute value, converges in distribution to the laws of the same functionals of the Brownian bridge B(t), see the Kolmogorov–Smirnov test. In 1949 Doob asked whether the convergence in distribution held for more general functionals, thus formulating a problem of weak convergence of random functions in a suitable function space.[3]

In 1952 Donsker stated and proved (not quite correctly)[4] a general extension for the Doob–Kolmogorov heuristic approach. In the original paper, Donsker proved that the convergence in law of Gn to the Brownian bridge holds for Uniform[0,1] distributions with respect to uniform convergence in t over the interval [0,1].[2]

However Donsker's formulation was not quite correct because of the problem of measurability of the functionals of discontinuous processes. In 1956 Skorokhod and Kolmogorov defined a separable metric d, called the Skorokhod metric, on the space of càdlàg functions on [0,1], such that convergence for d to a continuous function is equivalent to convergence for the sup norm, and showed that Gn converges in law in to the Brownian bridge.

Later Dudley reformulated Donsker's result to avoid the problem of measurability and the need of the Skorokhod metric. One can prove[4] that there exist Xi, iid uniform in [0,1] and a sequence of sample-continuous Brownian bridges Bn, such that

is measurable and converges in probability to 0. An improved version of this result, providing more detail on the rate of convergence, is the Komlós–Major–Tusnády approximation.

See also[edit]

References[edit]

  1. ^ Donsker, M.D. (1951). "An invariance principle for certain probability limit theorems". Memoirs of the American Mathematical Society (6). MR 0040613.
  • ^ a b Donsker, M. D. (1952). "Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems". Annals of Mathematical Statistics. 23 (2): 277–281. doi:10.1214/aoms/1177729445. MR 0047288. Zbl 0046.35103.
  • ^ Doob, Joseph L. (1949). "Heuristic approach to the Kolmogorov–Smirnov theorems". Annals of Mathematical Statistics. 20 (3): 393–403. doi:10.1214/aoms/1177729991. MR 0030732. Zbl 0035.08901.
  • ^ a b Dudley, R.M. (1999). Uniform Central Limit Theorems. Cambridge University Press. ISBN 978-0-521-46102-3.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Donsker%27s_theorem&oldid=1222813291"

    Categories: 
    Probability theorems
    Theorems in statistics
    Empirical process
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 8 May 2024, at 02:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki