Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Examples  





3 Skorokhod space  





4 Properties of Skorokhod space  



4.1  Generalization of the uniform topology  





4.2  Completeness  





4.3  Separability  





4.4  Tightness in Skorokhod space  





4.5  Algebraic and topological structure  







5 See also  





6 References  





7 Further reading  














Càdlàg






Deutsch
Español
فارسی
Français

Italiano
עברית
Magyar

Português
Русский
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a càdlàg (French: continue à droite, limite à gauche), RCLL ("right continuous with left limits"), or corlol ("continuous on (the) right, limit on (the) left") function is a function defined on the real numbers (or a subset of them) that is everywhere right-continuous and has left limits everywhere. Càdlàg functions are important in the study of stochastic processes that admit (or even require) jumps, unlike Brownian motion, which has continuous sample paths. The collection of càdlàg functions on a given domain is known as Skorokhod space.

Two related terms are càglàd, standing for "continue à gauche, limite à droite", the left-right reversal of càdlàg, and càllàl for "continue à l'un, limite à l’autre" (continuous on one side, limit on the other side), for a function which at each point of the domain is either càdlàg or càglàd.

Definition[edit]

Cumulative distribution functions are examples of càdlàg functions.
Example of a cumulative distribution function with a countably infinite set of discontinuities

Let be a metric space, and let . A function is called a càdlàg function if, for every ,

That is, is right-continuous with left limits.

Examples[edit]

Skorokhod space[edit]

The set of all càdlàg functions from to is often denoted by (or simply ) and is called Skorokhod space after the Ukrainian mathematician Anatoliy Skorokhod. Skorokhod space can be assigned a topology that, intuitively allows us to "wiggle space and time a bit" (whereas the traditional topology of uniform convergence only allows us to "wiggle space a bit").[1] For simplicity, take and — see Billingsley[2] for a more general construction.

We must first define an analogue of the modulus of continuity, . For any , set

and, for , define the càdlàg modulus to be

where the infimum runs over all partitions , with . This definition makes sense for non-càdlàg (just as the usual modulus of continuity makes sense for discontinuous functions). is càdlàg if and only if .

Now let denote the set of all strictly increasing, continuous bijections from to itself (these are "wiggles in time"). Let

denote the uniform norm on functions on . Define the Skorokhod metric onby

where is the identity function. In terms of the "wiggle" intuition, measures the size of the "wiggle in time", and measures the size of the "wiggle in space".

The Skorokhod metric is indeed a metric. The topology generated by is called the Skorokhod topologyon.

An equivalent metric,

was introduced independently and utilized in control theory for the analysis of switching systems.[3]

Properties of Skorokhod space[edit]

Generalization of the uniform topology[edit]

The space of continuous functions on is a subspaceof. The Skorokhod topology relativized to coincides with the uniform topology there.

Completeness[edit]

Although is not a complete space with respect to the Skorokhod metric , there is a topologically equivalent metric with respect to which is complete.[4]

Separability[edit]

With respect to either or, is a separable space. Thus, Skorokhod space is a Polish space.

Tightness in Skorokhod space[edit]

By an application of the Arzelà–Ascoli theorem, one can show that a sequence ofprobability measures on Skorokhod space istight if and only if both the following conditions are met:

and

Algebraic and topological structure[edit]

Under the Skorokhod topology and pointwise addition of functions, is not a topological group, as can be seen by the following example:

Let be a half-open interval and take to be a sequence of characteristic functions. Despite the fact that in the Skorokhod topology, the sequence does not converge to 0.

See also[edit]

References[edit]

  1. ^ "Skorokhod space - Encyclopedia of Mathematics".
  • ^ Billingsley, P. Convergence of Probability Measures. New York: Wiley.
  • ^ Georgiou, T.T. and Smith, M.C. (2000). "Robustness of a relaxation oscillator". International Journal of Robust and Nonlinear Control. 10 (11–12): 1005–1024. doi:10.1002/1099-1239(200009/10)10:11/12<1005::AID-RNC536>3.0.CO;2-Q.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ Billingsley, P. Convergence of Probability Measures. New York: Wiley.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Càdlàg&oldid=1224829388"

    Categories: 
    Real analysis
    Stochastic processes
    Hidden categories: 
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
    Articles containing French-language text
     



    This page was last edited on 20 May 2024, at 18:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki