Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Variables  





2 Equation  





3 Assumed Fick determination  





4 Underlying principles  





5 Use in renal physiology  





6 References  





7 External links  














Fick principle






Deutsch
Español

Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Fick principle states that blood flow to an organ can be calculated using a marker substance if the following information is known:

Developed by Adolf Eugen Fick (1829–1901), the Fick principle has been applied to the measurement of cardiac output. Its underlying principles may also be applied in a variety of clinical situations.

In Fick's original method, the "organ" was the entire human body and the marker substance was oxygen. The first published mention was in conference proceedings from July 9, 1870 from a lecture he gave at that conference;[1] it is this publishing that is most often used by articles to cite Fick's contribution.The principle may be applied in different ways. For example, if the blood flow to an organ is known, together with the arterial and venous concentrations of the marker substance, the uptake of marker substance by the organ may then be calculated.[citation needed]

Variables[edit]

In Fick's original method, the following variables are measured:[2]

Equation[edit]

From these values, we know that:

where

This allows us to say

and hence calculate cardiac output.

Note that (CaCv) is also known as the arteriovenous oxygen difference.[citation needed]

Assumed Fick determination[edit]

In reality, this method is rarely used due to the difficulty of collecting and analysing the gas concentrations. However, by using an assumed value for oxygen consumption, cardiac output can be closely approximated without the cumbersome and time-consuming oxygen consumption measurement. This is sometimes called an assumed Fick determination.[citation needed]

A commonly used value for O2 consumption at rest is 125 mLO2 per minute per square meter of body surface area.[citation needed]

Underlying principles[edit]

The Fick principle relies on the observation that the total uptake of (or release of) a substance by the peripheral tissues is equal to the product of the blood flow to the peripheral tissues and the arterial-venous concentration difference (gradient) of the substance. In the determination of cardiac output, the substance most commonly measured is the oxygen content of blood thus giving the arteriovenous oxygen difference, and the flow calculated is the flow across the pulmonary system. This gives a simple way to calculate the cardiac output:[citation needed]

Assuming there is no intracardiac shunt, the pulmonary blood flow equals the systemic blood flow. Measurement of the arterial and venous oxygen content of blood involves the sampling of blood from the pulmonary artery (low oxygen content) and from the pulmonary vein (high oxygen content). In practice, sampling of peripheral arterial blood is a surrogate for pulmonary venous blood. Determination of the oxygen consumption of the peripheral tissues is more complex.

The calculation of the arterial and venous oxygen concentration of the blood is a straightforward process. Almost all oxygen in the blood is bound to hemoglobin molecules in the red blood cells. Measuring the content of hemoglobin in the blood and the percentage of saturation of hemoglobin (the oxygen saturation of the blood) is a simple process and is readily available to physicians. Using the fact that each gram of hemoglobin can carry 1.34 mLofO2, the oxygen content of the blood (either arterial or venous) can be estimated by the following formula:

Assuming a hemoglobin concentration of 15 g/dL and an oxygen saturation of 99%, the oxygen concentration of arterial blood is approximately 200 mL of O2 per L.

The saturation of mixed venous blood is approximately 75% in health. Using this value in the above equation, the oxygen concentration of mixed venous blood is approximately 150 mL of O2 per L.

Therefore, using the assumed Fick determination, the approximated cardiac output for an average man (1.9 m3) is:

Cardiac Output = (125 mLO2/minute × 1.9) / (200 mLO2/L − 150 mLO2/L) = 4.75 L/min

Cardiac output may also be estimated with the Fick principle using production of carbon dioxide as a marker substance.[4]

Use in renal physiology[edit]

The principle can also be used in renal physiology to calculate renal blood flow.[5]

In this context, it is not oxygen which is measured, but a marker such as para-aminohippurate. However, the principles are essentially the same.

References[edit]

  1. ^ Fick, Adolf (9 July 1870). "Ueber die Messung dea Blutquantums in den Herzventrikela". Verhandlungen der Physikalisch-medizinische Gesellschaft zu Würzburg (in German). 2: XVI–XVII. hdl:2027/mdp.39015076673493. Retrieved 24 Oct 2017. NB: summary of his principle is under point (4) of the proceedings.
  • ^ Nosek, Thomas M. "Section 3/3ch5/s3ch5_3". Essentials of Human Physiology. Archived from the original on 2016-03-24. - "Indirect Measurement of Cardiac Output"
  • ^ Arterial blood
  • ^ Cuschieri, J; Rivers, EP; Donnino, MW; Katilius, M; Jacobsen, G; Nguyen, HB; Pamukov, N; Horst, HM (June 2005). "Central venous-arterial carbon dioxide difference as an indicator of cardiac index". Intensive Care Medicine. 31 (6): 818–22. doi:10.1007/s00134-005-2602-8. PMID 15803301. S2CID 8311073.
  • ^ Nosek, Thomas M. "Section 7/7ch04/7ch04p27". Essentials of Human Physiology. Archived from the original on 2016-03-24. - "Measuring Renal Blood Flow: Fick Principle"
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fick_principle&oldid=1229564342"

    Categories: 
    Cardiology
    Anesthesia
    Exercise biochemistry
    Hidden categories: 
    CS1 German-language sources (de)
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2021
    Articles with unsourced statements from August 2022
    Articles with unsourced statements from February 2022
    Pages that use a deprecated format of the chem tags
     



    This page was last edited on 17 June 2024, at 14:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki