Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Conditions of convergence  





3 Examples  



3.1  Fréchet distribution  





3.2  Gumbel distribution  





3.3  Weibull distribution  







4 See also  





5 References  





6 Further reading  














FisherTippettGnedenko theorem






Español
Français
Português
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Instatistics, the Fisher–Tippett–Gnedenko theorem (also the Fisher–Tippett theorem or the extreme value theorem) is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927),[1] Fisher and Tippett (1928),[2] Mises (1936),[3][4] and Gnedenko (1943).[5]

The role of the extremal types theorem for maxima is similar to that of central limit theorem for averages, except that the central limit theorem applies to the average of a sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko theorem only states that if the distribution of a normalized maximum converges, then the limit has to be one of a particular class of distributions. It does not state that the distribution of the normalized maximum does converge.

Statement[edit]

Let be an n-sized sample of independent and identically-distributed random variables, each of whose cumulative distribution functionis Suppose that there exist two sequences of real numbers and such that the following limits converge to a non-degenerate distribution function:

or equivalently:

In such circumstances, the limiting distribution belongs to either the Gumbel, the Fréchet, or the Weibull distribution family.[6]

In other words, if the limit above converges, then up to a linear change of coordinates will assume either the form:[7]

for

with the non-zero parameter also satisfying for every value supported by (for all values for which ). Otherwise it has the form:

for

This is the cumulative distribution function of the generalized extreme value distribution (GEV) with extreme value index The GEV distribution groups the Gumbel, Fréchet, and Weibull distributions into a single composite form.

Conditions of convergence[edit]

The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution above. The study of conditions for convergence of to particular cases of the generalized extreme value distribution began with Mises (1936)[3][5][4] and was further developed by Gnedenko (1943).[5]

Let be the distribution function of and be some i.i.d. sample thereof.
Also let be the population maximum:

The limiting distribution of the normalized sample maximum, given by above, will then be:[7]


Fréchet distribution
For strictly positive the limiting distribution converges if and only if
and
for all
In this case, possible sequences that will satisfy the theorem conditions are
and
Strictly positive corresponds to what is called a heavy tailed distribution.


Gumbel distribution
For trivial and with either finite or infinite, the limiting distribution converges if and only if
for all
with
Possible sequences here are
and


Weibull distribution
For strictly negative the limiting distribution converges if and only if
(is finite)
and
for all
Note that for this case the exponential term is strictly positive, since is strictly negative.
Possible sequences here are
and


Note that the second formula (the Gumbel distribution) is the limit of the first (the Fréchet distribution) as goes to zero.

Examples[edit]

Fréchet distribution[edit]

The Cauchy distribution's density function is:

and its cumulative distribution function is:

A little bit of calculus show that the right tail's cumulative distribution isasymptotictoor

so we have

Thus we have

and letting (and skipping some explanation)

for any

Gumbel distribution[edit]

Let us take the normal distribution with cumulative distribution function

We have

and thus

Hence we have

If we define as the value that exactly satisfies

then around

As increases, this becomes a good approximation for a wider and wider range of so letting we find that

Equivalently,

With this result, we see retrospectively that we need and then

so the maximum is expected to climb toward infinity ever more slowly.

Weibull distribution[edit]

We may take the simplest example, a uniform distribution between 0 and 1, with cumulative distribution function

for any x value from 0to1 .

For values of we have

So for we have

Let and get

Close examination of that limit shows that the expected maximum approaches 1 in inverse proportion to n .

See also[edit]

  • Gumbel distribution
  • Generalized extreme value distribution
  • Generalized Pareto distribution
  • Pickands–Balkema–de Haan theorem
  • References[edit]

    1. ^ Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum". Annales de la Société Polonaise de Mathématique. 6 (1): 93–116.
  • ^ Fisher, R.A.; Tippett, L.H.C. (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Proc. Camb. Phil. Soc. 24 (2): 180–190. Bibcode:1928PCPS...24..180F. doi:10.1017/s0305004100015681. S2CID 123125823.
  • ^ a b von Mises, R. (1936). "La distribution de la plus grande de n valeurs" [The distribution of the largest of n values]. Rev. Math. Union Interbalcanique. 1 (in French): 141–160.
  • ^ a b Falk, Michael; Marohn, Frank (1993). "von Mises conditions revisited". The Annals of Probability: 1310–1328.
  • ^ a b c Gnedenko, B.V. (1943). "Sur la distribution limite du terme maximum d'une serie aleatoire". Annals of Mathematics. 44 (3): 423–453. doi:10.2307/1968974. JSTOR 1968974.
  • ^ Mood, A.M. (1950). "5. Order Statistics". Introduction to the theory of statistics. New York, NY: McGraw-Hill. pp. 251–270.
  • ^ a b Haan, Laurens; Ferreira, Ana (2007). Extreme Value Theory: An introduction. Springer.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fisher–Tippett–Gnedenko_theorem&oldid=1226112467"

    Categories: 
    Theorems in statistics
    Extreme value data
    Tails of probability distributions
    Hidden categories: 
    CS1 French-language sources (fr)
    Articles needing additional references from April 2023
    All articles needing additional references
     



    This page was last edited on 28 May 2024, at 16:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki