Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Engine operation  





2 Engine as a pump  





3 Demonstration video  





4 See also  





5 References  





6 Further reading  





7 External links  














Fluidyne engine






Dansk
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is a Fluidyne variant with a solid displacer piston (3). In figure -a-, as the displacer moves from the cold compression space (2), to the hot expansion space (4) in figure -b-, the temperature of the gaseous working fluid is increased. This increases the pressure of the gaseous working fluid, and as it expands, work is done on the (red) liquid piston as it is pushed through the tube.
schematic of a U-tube type Fluidyne engine.
A concentric-cylinder Fluidyne pumping engine. Topologically equivalent to a U-tube design.

AFluidyne engine is an alpha or gamma type Stirling engine with one or more liquid pistons. It contains a working gas (often air), and either two liquid pistons or one liquid piston and a displacer.[1]

The engine was invented in 1969.[2] The engine was patented in 1973 by the United Kingdom Atomic Energy Authority.[3][2]

Engine operation

[edit]

Working gas in the engine is heated, and this causes it to expand and push on the water column. This expansion cools the air which contracts, at the same time being pushed back by the weight of the displaced water column. The cycle then repeats.

The U-tube version has no moving parts in the engine other than the water and air, although there are two check valves in the pump. This engine operates at a natural resonance cycle that is "tuned" by adjusting the geometry, generally with a "tuning tube" of water.

Engine as a pump

[edit]

In the classic configuration, the work produced via the water pistons is integrated with a water pump. The simple pump is external to the engine, and consists of two check valves, one on the intake and one on the outlet. In the engine, the loop of oscillating liquid can be thought of as acting as a displacer piston. The liquid in the single tube extending to the pump acts as the power piston. Traditionally the pump is open to the atmosphere, and the hydraulic head is small, so that the absolute engine pressure is close to atmospheric pressure.[2][4][5]

Demonstration video

[edit]
Test of a model Fluidyne engine.
Detail of a water level displacement in a leftmost vertical tube.

The videos show operation of a U-tube type model Fluidyne engine. Hot pipe is heated by a heat gun, and water column oscillation builds up to a steady-state level. Second video shows a detail of the actual water displacement.

See also

[edit]

References

[edit]
  1. ^ Romanelli, Alejandro (2019). "The Fluidyne engine". American Journal of Physics. 87 (1). American Association of Physics Teachers (AAPT): 33–37. arXiv:1812.11100. Bibcode:2019AmJPh..87...33R. doi:10.1119/1.5078518. ISSN 0002-9505. S2CID 119221418.
  • ^ a b c West, C. D. (August 1987). "Stirling Engines, and Irrigation Pumping" (PDF). Oak Ridge National Laboratory. Archived from the original (PDF) on May 24, 2011. Retrieved August 6, 2011. This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison. [1]
  • ^ GB1329567 (A) - STIRLING CYCLE HEAT ENGINES
  • ^ West, C. D. (1983). Liquid piston Stirling engines. New York: Van Nostrand Reinhold. pp. 7. ISBN 978-0-442-29237-9.
  • ^ Swift, G. (1999). Thermoacoustics: A unifying perspective for some engines and refrigerators. p. 300. ISBN 978-0-735-40065-8.
  • Further reading

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fluidyne_engine&oldid=1171371155"

    Categories: 
    Stirling engines
    Piston engines
    Pistons
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Commons category link is on Wikidata
    Articles containing video clips
     



    This page was last edited on 20 August 2023, at 18:41 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki