Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Other properties  





2 Generalized pentagonal numbers and centered hexagonal numbers  





3 Tests for pentagonal numbers  





4 Gnomon  





5 Square pentagonal numbers  





6 See also  





7 References  





8 Further reading  














Pentagonal number






العربية
Català
Čeština
Deutsch
Ελληνικά
Emiliàn e rumagnòl
Español
Français
Galego

Italiano
עברית
Magyar
Nederlands

Português
Română
Русский
Slovenščina
Suomi
Svenska
ி
Türkçe
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Generalized pentagonal number)

A visual representation of the first six pentagonal numbers

Apentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The nth pentagonal number pn is the number of distinct dots in a pattern of dots consisting of the outlines of regular pentagons with sides up to n dots, when the pentagons are overlaid so that they share one vertex. For instance, the third one is formed from outlines comprising 1, 5 and 10 dots, but the 1, and 3 of the 5, coincide with 3 of the 10 – leaving 12 distinct dots, 10 in the form of a pentagon, and 2 inside.

pn is given by the formula:

for n ≥ 1. The first few pentagonal numbers are:

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151, 3290, 3432, 3577, 3725, 3876, 4030, 4187... (sequence A000326 in the OEIS).

The nth pentagonal number is the sum of n integers starting from n (i.e. from n to 2n-1). The following relationships also hold:

Pentagonal numbers are closely related to triangular numbers. The nth pentagonal number is one third of the (3n − 1)thtriangular number. In addition, where Tn is the nth triangular number:


Generalized pentagonal numbers are obtained from the formula given above, but with n taking values in the sequence 0, 1, −1, 2, −2, 3, −3, 4..., producing the sequence:

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335... (sequence A001318 in the OEIS).

Generalized pentagonal numbers are important to Euler's theory of integer partitions, as expressed in his pentagonal number theorem.

The number of dots inside the outermost pentagon of a pattern forming a pentagonal number is itself a generalized pentagonal number.

Other properties[edit]

Generalized pentagonal numbers and centered hexagonal numbers[edit]

Generalized pentagonal numbers are closely related to centered hexagonal numbers. When the array corresponding to a centered hexagonal number is divided between its middle row and an adjacent row, it appears as the sum of two generalized pentagonal numbers, with the larger piece being a pentagonal number proper:

1=1+0 7=5+2 19=12+7 37=22+15
* **
***
**
***
****
*****
****
***
****
*****
******
*******
******
*****
****

In general:

where both terms on the right are generalized pentagonal numbers and the first term is a pentagonal number proper (n ≥ 1). This division of centered hexagonal arrays gives generalized pentagonal numbers as trapezoidal arrays, which may be interpreted as Ferrers diagrams for their partition. In this way they can be used to prove the pentagonal number theorem referenced above.

Proof without words that the nth pentagonal number can be decomposed into three triangular numbers and the number n.

Tests for pentagonal numbers[edit]

Given a positive integer x, to test whether it is a (non-generalized) pentagonal number we can compute

The number x is pentagonal if and only if n is a natural number. In that case x is the nth pentagonal number.

For generalized pentagonal numbers, it is sufficient to just check if 24x + 1 is a perfect square.

For non-generalized pentagonal numbers, in addition to the perfect square test, it is also required to check if

The mathematical properties of pentagonal numbers ensure that these tests are sufficient for proving or disproving the pentagonality of a number.[1]

Gnomon[edit]

The Gnomon of the nth pentagonal number is:

Square pentagonal numbers[edit]

A square pentagonal number is a pentagonal number that is also a perfect square.[2]

The first few are:

0, 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, 7681419682192581869134354401, 73756990988431941623299373152801... (OEIS entry A036353)

See also[edit]

References[edit]

  • ^ Weisstein, Eric W. "Pentagonal Square Number." From MathWorld--A Wolfram Web Resource.
  • Further reading[edit]



    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pentagonal_number&oldid=1228177101"

    Category: 
    Figurate numbers
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 9 June 2024, at 21:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki