Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Properties  





3 Odd and even square numbers  





4 Special cases  





5 See also  





6 Notes  





7 Further reading  














Square number






العربية
Azərbaycanca

Български
Català
Чӑвашла
Čeština
Cymraeg
Dansk
Deutsch
Ελληνικά
Emiliàn e rumagnòl
Español
Esperanto
فارسی
Français
Galego


Hornjoserbsce
Hrvatski
Bahasa Indonesia
Íslenska
Italiano
עברית
Latina
Latviešu
Magyar

Bahasa Melayu
Nederlands

Nordfriisk
Norsk bokmål
Norsk nynorsk
Oromoo
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
کوردی
Srpskohrvatski / српскохрватски
Suomi
ி

Türkçe
Українська
Tiếng Vit

ייִדיש


 

Edit links
 









Article
Talk
 

















Read
View source
View history
 








Tools
   


Actions  



Read
View source
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





Page semi-protected

From Wikipedia, the free encyclopedia
 


Square number 16 as sum of gnomons.

Inmathematics, a square numberorperfect square is an integer that is the square of an integer;[1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

The usual notation for the square of a number n is not the product n × n, but the equivalent exponentiation n2, usually pronounced as "n squared". The name square number comes from the name of the shape. The unit of area is defined as the area of a unit square (1 × 1). Hence, a square with side length n has area n2. If a square number is represented by n points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of n; thus, square numbers are a type of figurate numbers (other examples being cube numbers and triangular numbers).

In the real number system, square numbers are non-negative. A non-negative integer is a square number when its square root is again an integer. For example, so 9 is a square number.

A positive integer that has no square divisors except 1 is called square-free.

For a non-negative integer n, the nth square number is n2, with 02 = 0 being the zeroth one. The concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two square integers, and, conversely, the ratio of two square integers is a square, for example, .

Starting with 1, there are square numbers up to and including m, where the expression represents the floor of the number x.

Examples

The squares (sequence A000290 in the OEIS) smaller than 602 = 3600 are:

02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81

102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361

202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841

302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521

402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401

502 = 2500
512 = 2601
522 = 2704
532 = 2809
542 = 2916
552 = 3025
562 = 3136
572 = 3249
582 = 3364
592 = 3481

The difference between any perfect square and its predecessor is given by the identity n2 − (n − 1)2 = 2n − 1. Equivalently, it is possible to count square numbers by adding together the last square, the last square's root, and the current root, that is, n2 = (n − 1)2 + (n − 1) + n.

Properties

The number m is a square number if and only if one can arrange m points in a square:

m = 12 = 1
m = 22 = 4
m = 32 = 9
m = 42 = 16
m = 52 = 25

The expression for the nth square number is n2. This is also equal to the sum of the first n odd numbers as can be seen in the above pictures, where a square results from the previous one by adding an odd number of points (shown in magenta). The formula follows:For example, 52 = 25 = 1 + 3 + 5 + 7 + 9.

The sum of the first n odd integers is n2. 1 + 3 + 5 + ... + (2n − 1) = n2. Animated 3D visualization on a tetrahedron.

There are several recursive methods for computing square numbers. For example, the nth square number can be computed from the previous square by n2 = (n − 1)2 + (n − 1) + n = (n − 1)2 + (2n − 1). Alternatively, the nth square number can be calculated from the previous two by doubling the (n − 1)th square, subtracting the (n − 2)th square number, and adding 2, because n2 = 2(n − 1)2 − (n − 2)2 + 2. For example,

2 × 52 − 42 + 2 = 2 × 25 − 16 + 2 = 50 − 16 + 2 = 36 = 62.

The square minus one of a number m is always the product of and that is,For example, since 72 = 49, one has . Since a prime number has factors of only 1 and itself, and since m = 2 is the only non-zero value of m to give a factor of 1 on the right side of the equation above, it follows that 3 is the only prime number one less than a square (3 = 22 − 1).


More generally, the difference of the squares of two numbers is the product of their sum and their difference. That is,This is the difference-of-squares formula, which can be useful for mental arithmetic: for example, 47 × 53 can be easily computed as 502 − 32 = 2500 − 9 = 2491. A square number is also the sum of two consecutive triangular numbers. The sum of two consecutive square numbers is a centered square number. Every odd square is also a centered octagonal number.

Another property of a square number is that (except 0) it has an odd number of positive divisors, while other natural numbers have an even number of positive divisors. An integer root is the only divisor that pairs up with itself to yield the square number, while other divisors come in pairs.

Lagrange's four-square theorem states that any positive integer can be written as the sum of four or fewer perfect squares. Three squares are not sufficient for numbers of the form 4k(8m + 7). A positive integer can be represented as a sum of two squares precisely if its prime factorization contains no odd powers of primes of the form 4k + 3. This is generalized by Waring's problem.

Inbase 10, a square number can end only with digits 0, 1, 4, 5, 6 or 9, as follows:

Inbase 12, a square number can end only with square digits (like in base 12, a prime number can end only with prime digits or 1), that is, 0, 1, 4 or 9, as follows:

Similar rules can be given for other bases, or for earlier digits (the tens instead of the units digit, for example).[citation needed] All such rules can be proved by checking a fixed number of cases and using modular arithmetic.

In general, if a prime p divides a square number m then the square of p must also divide m; if p fails to divide m/p, then m is definitely not square. Repeating the divisions of the previous sentence, one concludes that every prime must divide a given perfect square an even number of times (including possibly 0 times). Thus, the number m is a square number if and only if, in its canonical representation, all exponents are even.

Squarity testing can be used as alternative way in factorization of large numbers. Instead of testing for divisibility, test for squarity: for given m and some number k, if k2m is the square of an integer n then kn divides m. (This is an application of the factorization of a difference of two squares.) For example, 1002 − 9991 is the square of 3, so consequently 100 − 3 divides 9991. This test is deterministic for odd divisors in the range from kntok + n where k covers some range of natural numbers

A square number cannot be a perfect number.

The sum of the n first square numbers isThe first values of these sums, the square pyramidal numbers, are: (sequence A000330 in the OEIS)

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201...

Proof without words for the sum of odd numbers theorem

The sum of the first odd integers, beginning with one, is a perfect square: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, etc. This explains Galileo's law of odd numbers: if a body falling from rest covers one unit of distance in the first arbitrary time interval, it covers 3, 5, 7, etc., units of distance in subsequent time intervals of the same length. From , for u = 0 and constant a (acceleration due to gravity without air resistance); so s is proportional to t2, and the distance from the starting point are consecutive squares for integer values of time elapsed.[2]

The sum of the n first cubes is the square of the sum of the n first positive integers; this is Nicomachus's theorem.

All fourth powers, sixth powers, eighth powers and so on are perfect squares.

A unique relationship with triangular numbers is:

Odd and even square numbers

Squares of even numbers are even, and are divisible by 4, since (2n)2 = 4n2. Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1)2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8.

Every odd perfect square is a centered octagonal number. The difference between any two odd perfect squares is a multiple of 8. The difference between 1 and any higher odd perfect square always is eight times a triangular number, while the difference between 9 and any higher odd perfect square is eight times a triangular number minus eight. Since all triangular numbers have an odd factor, but no two values of 2n differ by an amount containing an odd factor, the only perfect square of the form 2n − 1 is 1, and the only perfect square of the form 2n + 1 is 9.

Special cases

See also

  • Cubic number – Number raised to the third power
  • Euler's four-square identity – Product of sums of four squares expressed as a sum of four squares
  • Fermat's theorem on sums of two squares – Condition under which an odd prime is a sum of two squares
  • Some identities involving several squares
  • Integer square root – Greatest integer less than or equal to square root
  • Methods of computing square roots – Algorithms for calculating square roots
  • Power of two – Two raised to an integer power
  • Pythagorean triple – Integer side lengths of a right triangle
  • Quadratic residue – Integer that is a perfect square modulo some integer
  • Quadratic function – Polynomial function of degree two
  • Square triangular number – Integer that is both a perfect square and a triangular number
  • Notes

    1. ^ Some authors also call squares of rational numbers perfect squares.
  • ^ Olenick, Richard P.; Apostol, Tom M.; Goodstein, David L. (2008-01-14). The Mechanical Universe: Introduction to Mechanics and Heat. Cambridge University Press. p. 18. ISBN 978-0-521-71592-8.
  • ^ Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers: n^2 ends with n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • Further reading


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Square_number&oldid=1154182731"

    Categories: 
    Elementary arithmetic
    Figurate numbers
    Integer sequences
    Integers
    Number theory
    Quadrilaterals
    Squares in number theory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia pages semi-protected from banned users
    Articles lacking in-text citations from February 2012
    All articles lacking in-text citations
    All articles with unsourced statements
    Articles with unsourced statements from March 2016
     



    This page was last edited on 10 May 2023, at 19:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki