Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Classical groups  





2 Chevalley groups  





3 Steinberg groups  





4 SuzukiRee groups  





5 Relations with finite simple groups  





6 Small groups of Lie type  





7 Notation issues  





8 See also  





9 Notes  





10 References  














Group of Lie type






Deutsch
فارسی
Français
Italiano
Nederlands
Русский
Suomi
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition,[1] but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.

The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. Dieudonné (1971) and Carter (1989) are standard references for groups of Lie type.

Classical groups[edit]

An initial approach to this question was the definition and detailed study of the so-called classical groups over finite and other fieldsbyJordan (1870). These groups were studied by L. E. Dickson and Jean Dieudonné. Emil Artin investigated the orders of such groups, with a view to classifying cases of coincidence.

A classical group is, roughly speaking, a special linear, orthogonal, symplectic, or unitary group. There are several minor variations of these, given by taking derived subgroupsorcentral quotients, the latter yielding projective linear groups. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series An, Bn, Cn, Dn,2An, 2Dn of Chevalley and Steinberg groups.

Chevalley groups[edit]

Chevalley groups can be thought of as Lie groups over finite fields. The theory was clarified by the theory of algebraic groups, and the work of Chevalley (1955) on Lie algebras, by means of which the Chevalley group concept was isolated. Chevalley constructed a Chevalley basis (a sort of integral form but over finite fields) for all the complex simple Lie algebras (or rather of their universal enveloping algebras), which can be used to define the corresponding algebraic groups over the integers. In particular, he could take their points with values in any finite field. For the Lie algebras An, Bn, Cn, Dn this gave well known classical groups, but his construction also gave groups associated to the exceptional Lie algebras E6, E7, E8, F4, and G2. The ones of type G2 (sometimes called Dickson groups) had already been constructed by Dickson (1905), and the ones of type E6byDickson (1901).

Steinberg groups[edit]

Chevalley's construction did not give all of the known classical groups: it omitted the unitary groups and the non-split orthogonal groups. Steinberg (1959) found a modification of Chevalley's construction that gave these groups and two new families 3D4, 2E6, the second of which was discovered at about the same time from a different point of view by Tits (1958). This construction generalizes the usual construction of the unitary group from the general linear group.

The unitary group arises as follows: the general linear group over the complex numbers has a diagram automorphism given by reversing the Dynkin diagramAn (which corresponds to taking the transpose inverse), and a field automorphism given by taking complex conjugation, which commute. The unitary group is the group of fixed points of the product of these two automorphisms.

In the same way, many Chevalley groups have diagram automorphisms induced by automorphisms of their Dynkin diagrams, and field automorphisms induced by automorphisms of a finite field. Analogously to the unitary case, Steinberg constructed families of groups by taking fixed points of a product of a diagram and a field automorphism.

These gave:

The groups of type 3D4 have no analogue over the reals, as the complex numbers have no automorphism of order 3.[clarification needed] The symmetries of the D4 diagram also give rise to triality.

Suzuki–Ree groups[edit]

Suzuki (1960) found a new infinite series of groups that at first sight seemed unrelated to the known algebraic groups. Ree (1960, 1961) knew that the algebraic group B2 had an "extra" automorphism in characteristic 2 whose square was the Frobenius automorphism. He found that if a finite field of characteristic 2 also has an automorphism whose square was the Frobenius map, then an analogue of Steinberg's construction gave the Suzuki groups. The fields with such an automorphism are those of order 22n+1, and the corresponding groups are the Suzuki groups

2B2(22n+1) = Suz(22n+1).

(Strictly speaking, the group Suz(2) is not counted as a Suzuki group as it is not simple: it is the Frobenius group of order 20.) Ree was able to find two new similar families

2F4(22n+1)

and

2G2(32n+1)

of simple groups by using the fact that F4 and G2 have extra automorphisms in characteristic 2 and 3. (Roughly speaking, in characteristic p one is allowed to ignore the arrow on bonds of multiplicity p in the Dynkin diagram when taking diagram automorphisms.) The smallest group 2F4(2) of type 2F4 is not simple, but it has a simple subgroup of index 2, called the Tits group (named after the mathematician Jacques Tits). The smallest group 2G2(3) of type 2G2 is not simple, but it has a simple normal subgroup of index 3, isomorphic to A1(8). In the classification of finite simple groups, the Ree groups

2G2(32n+1)

are the ones whose structure is hardest to pin down explicitly. These groups also played a role in the discovery of the first modern sporadic group. They have involution centralizers of the form Z/2Z × PSL(2, q) for q = 3n, and by investigating groups with an involution centralizer of the similar form Z/2Z × PSL(2, 5) Janko found the sporadic group J1.

The Suzuki groups are the only finite non-abelian simple groups with order not divisible by 3. They have order 22(2n+1)(22(2n+1) + 1)(2(2n+1) − 1).

Relations with finite simple groups[edit]

Finite groups of Lie type were among the first groups to be considered in mathematics, after cyclic, symmetric and alternating groups, with the projective special linear groups over prime finite fields, PSL(2, p) being constructed by Évariste Galois in the 1830s. The systematic exploration of finite groups of Lie type started with Camille Jordan's theorem that the projective special linear group PSL(2, q) is simple for q ≠ 2, 3. This theorem generalizes to projective groups of higher dimensions and gives an important infinite family PSL(n, q) of finite simple groups. Other classical groups were studied by Leonard Dickson in the beginning of 20th century. In the 1950s Claude Chevalley realized that after an appropriate reformulation, many theorems about semisimple Lie groups admit analogues for algebraic groups over an arbitrary field k, leading to construction of what are now called Chevalley groups. Moreover, as in the case of compact simple Lie groups, the corresponding groups turned out to be almost simple as abstract groups (Tits simplicity theorem). Although it was known since 19th century that other finite simple groups exist (for example, Mathieu groups), gradually a belief formed that nearly all finite simple groups can be accounted for by appropriate extensions of Chevalley's construction, together with cyclic and alternating groups. Moreover, the exceptions, the sporadic groups, share many properties with the finite groups of Lie type, and in particular, can be constructed and characterized based on their geometry in the sense of Tits.

The belief has now become a theorem – the classification of finite simple groups. Inspection of the list of finite simple groups shows that groups of Lie type over a finite field include all the finite simple groups other than the cyclic groups, the alternating groups, the Tits group, and the 26 sporadic simple groups.

Small groups of Lie type[edit]

In general the finite group associated to an endomorphism of a simply connected simple algebraic group is the universal central extension of a simple group, so is perfect and has trivial Schur multiplier. However some of the smallest groups in the families above are either not perfect or have a Schur multiplier larger than "expected".

Cases where the group is not perfect include

Some cases where the group is perfect but has a Schur multiplier that is larger than expected include:

There is a bewildering number of "accidental" isomorphisms between various small groups of Lie type (and alternating groups). For example, the groups SL(2, 4), PSL(2, 5), and the alternating group on 5 points are all isomorphic.

For a complete list of these exceptions see the list of finite simple groups. Many of these special properties are related to certain sporadic simple groups.

Alternating groups sometimes behave as if they were groups of Lie type over the field with one element. Some of the small alternating groups also have exceptional properties. The alternating groups usually have an outer automorphism group of order 2, but the alternating group on 6 points has an outer automorphism group of order 4. Alternating groups usually have a Schur multiplier of order 2, but the ones on 6 or 7 points have a Schur multiplier of order 6.

Notation issues[edit]

There is no standard notation for the finite groups of Lie type, and the literature contains dozens of incompatible and confusing systems of notation for them.

See also[edit]

Notes[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Group_of_Lie_type&oldid=1147019567"

Categories: 
Group theory
Lie algebras
Algebraic groups
Hidden categories: 
Wikipedia articles needing clarification from February 2014
Articles with GND identifiers
 



This page was last edited on 28 March 2023, at 10:42 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki