Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Basic properties  





2 Conjugacy classes  





3 Relation with symmetric group  





4 Generators and relations  





5 Automorphism group  





6 Exceptional isomorphisms  





7 Examples S4 and A4  





8 Example A5 as a subgroup of 3-space rotations  





9 Example: the 15 puzzle  





10 Subgroups  





11 Group homology  



11.1  H1: Abelianization  





11.2  H2: Schur multipliers  







12 Notes  





13 References  





14 External links  














Alternating group






العربية
Català
Čeština
Dansk
Deutsch
Español
Français

Bahasa Indonesia
עברית
Magyar

Nederlands

Polski
Português
Română
Русский
Suomi
Svenska
ி
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, an alternating group is the groupofeven permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by AnorAlt(n).

Basic properties

[edit]

For n >1, the group An is the commutator subgroup of the symmetric groupSn with index 2 and has therefore n!/2 elements. It is the kernel of the signature group homomorphism sgn : Sn → {1, −1} explained under symmetric group.

The group Anisabelian if and only if n ≤ 3 and simple if and only if n = 3orn ≥ 5. A5 is the smallest non-abelian simple group, having order 60, and the smallest non-solvable group.

The group A4 has the Klein four-group V as a proper normal subgroup, namely the identity and the double transpositions { (), (12)(34), (13)(24), (14)(23) }, that is the kernel of the surjection of A4 onto A3 ≅ Z3. We have the exact sequence V → A4 → A3 = Z3. In Galois theory, this map, or rather the corresponding map S4 → S3, corresponds to associating the Lagrange resolvent cubic to a quartic, which allows the quartic polynomial to be solved by radicals, as established by Lodovico Ferrari.

Conjugacy classes

[edit]

As in the symmetric group, any two elements of An that are conjugate by an element of An must have the same cycle shape. The converse is not necessarily true, however. If the cycle shape consists only of cycles of odd length with no two cycles the same length, where cycles of length one are included in the cycle type, then there are exactly two conjugacy classes for this cycle shape (Scott 1987, §11.1, p299).

Examples:

Relation with symmetric group

[edit]
See Symmetric group.

As finite symmetric groups are the groups of all permutations of a set with finite elements, and the alternating groups are groups of even permutations, alternating groups are subgroups of finite symmetric groups.

Generators and relations

[edit]

For n ≥ 3, An is generated by 3-cycles, since 3-cycles can be obtained by combining pairs of transpositions. This generating set is often used to prove that An is simple for n ≥ 5.

Automorphism group

[edit]
n Aut(An) Out(An)
n ≥ 4, n ≠ 6 Sn Z2
n = 1, 2 Z1 Z1
n = 3 Z2 Z2
n = 6 S6 ⋊ Z2 V = Z2 × Z2

For n >3, except for n = 6, the automorphism group of An is the symmetric group Sn, with inner automorphism groupAn and outer automorphism groupZ2; the outer automorphism comes from conjugation by an odd permutation.

For n = 1 and 2, the automorphism group is trivial. For n = 3 the automorphism group is Z2, with trivial inner automorphism group and outer automorphism group Z2.

The outer automorphism group of A6isthe Klein four-group V = Z2 × Z2, and is related to the outer automorphism of S6. The extra outer automorphism in A6 swaps the 3-cycles (like (123)) with elements of shape 32 (like (123)(456)).

Exceptional isomorphisms

[edit]

There are some exceptional isomorphisms between some of the small alternating groups and small groups of Lie type, particularly projective special linear groups. These are:

More obviously, A3 is isomorphic to the cyclic groupZ3, and A0, A1, and A2 are isomorphic to the trivial group (which is also SL1(q) = PSL1(q) for any q).

Examples S4 and A4

[edit]
Cayley table of the symmetric groupS4

The odd permutations are colored:
Transpositions in green and 4-cycles in orange
   
Cayley table of the alternating group A4
Elements: The even permutations (the identity, eight 3-cycles and three double-transpositions (double transpositions in boldface))

Subgroups:
Klein four-group
Cyclic group Z3 Cyclic group Z3 Cyclic group Z3 Cyclic group Z3
Cycle graphs

A3 = Z3 (order 3)

A4 (order 12)

A4 × Z2 (order 24)

S3 = Dih3 (order 6)

S4 (order 24)

A4 in S4 on the left

Example A5 as a subgroup of 3-space rotations

[edit]
A5 <SO3(R)
  ball – radius πprincipal homogeneous space of SO(3)
  icosidodecahedron – radius π – conjugacy class of 2-2-cycles
  icosahedron – radius 4π/5 – half of the split conjugacy class of 5-cycles
  dodecahedron – radius 2π/3 – conjugacy class of 3-cycles
  icosahedron – radius 2π/5 – second half of split 5-cycles
Compound of five tetrahedra. A5 acts on the dodecahedron by permuting the 5 inscribed tetrahedra. Even permutations of these tetrahedra are exactly the symmetric rotations of the dodecahedron and characterizes the A5 <SO3(R) correspondence.

A5 is the group of isometries of a dodecahedron in 3-space, so there is a representation A5 → SO3(R).

In this picture the vertices of the polyhedra represent the elements of the group, with the center of the sphere representing the identity element. Each vertex represents a rotation about the axis pointing from the center to that vertex, by an angle equal to the distance from the origin, in radians. Vertices in the same polyhedron are in the same conjugacy class. Since the conjugacy class equation for A5is1 + 12 + 12 + 15 + 20 = 60, we obtain four distinct (nontrivial) polyhedra.

The vertices of each polyhedron are in bijective correspondence with the elements of its conjugacy class, with the exception of the conjugacy class of (2,2)-cycles, which is represented by an icosidodecahedron on the outer surface, with its antipodal vertices identified with each other. The reason for this redundancy is that the corresponding rotations are by π radians, and so can be represented by a vector of length π in either of two directions. Thus the class of (2,2)-cycles contains 15 elements, while the icosidodecahedron has 30 vertices.

The two conjugacy classes of twelve 5-cycles in A5 are represented by two icosahedra, of radii 2π/5 and 4π/5, respectively. The nontrivial outer automorphism in Out(A5) ≃ Z2 interchanges these two classes and the corresponding icosahedra.

Example: the 15 puzzle

[edit]
A15 puzzle.

It can be proved that the 15 puzzle, a famous example of the sliding puzzle, can be represented by the alternating group A15,[2] because the combinations of the 15 puzzle can be generated by 3-cycles. In fact, any 2k − 1 sliding puzzle with square tiles of equal size can be represented by A2k−1.

Subgroups

[edit]

A4 is the smallest group demonstrating that the converse of Lagrange's theorem is not true in general: given a finite group G and a divisor d of |G|, there does not necessarily exist a subgroup of G with order d: the group G = A4, of order 12, has no subgroup of order 6. A subgroup of three elements (generated by a cyclic rotation of three objects) with any distinct nontrivial element generates the whole group.

For all n >4, An has no nontrivial (that is, proper) normal subgroups. Thus, An is a simple group for all n >4. A5 is the smallest non-solvable group.

Group homology

[edit]

The group homology of the alternating groups exhibits stabilization, as in stable homotopy theory: for sufficiently large n, it is constant. However, there are some low-dimensional exceptional homology. Note that the homology of the symmetric group exhibits similar stabilization, but without the low-dimensional exceptions (additional homology elements).

H1: Abelianization

[edit]

The first homology group coincides with abelianization, and (since Anisperfect, except for the cited exceptions) is thus:

H1(An, Z) = Z1 for n = 0, 1, 2;
H1(A3, Z) = Aab
3
= A3 = Z3;
H1(A4, Z) = Aab
4
= Z3;
H1(An, Z) = Z1 for n ≥ 5.

This is easily seen directly, as follows. An is generated by 3-cycles – so the only non-trivial abelianization maps are An → Z3, since order-3 elements must map to order-3 elements – and for n ≥ 5 all 3-cycles are conjugate, so they must map to the same element in the abelianization, since conjugation is trivial in abelian groups. Thus a 3-cycle like (123) must map to the same element as its inverse (321), but thus must map to the identity, as it must then have order dividing 2 and 3, so the abelianization is trivial.

For n <3, An is trivial, and thus has trivial abelianization. For A3 and A4 one can compute the abelianization directly, noting that the 3-cycles form two conjugacy classes (rather than all being conjugate) and there are non-trivial maps A3 ↠ Z3 (in fact an isomorphism) and A4 ↠ Z3.

H2: Schur multipliers

[edit]

The Schur multipliers of the alternating groups An (in the case where n is at least 5) are the cyclic groups of order 2, except in the case where n is either 6 or 7, in which case there is also a triple cover. In these cases, then, the Schur multiplier is (the cyclic group) of order 6.[3] These were first computed in (Schur 1911).

H2(An, Z) = Z1 for n = 1, 2, 3;
H2(An, Z) = Z2 for n = 4, 5;
H2(An, Z) = Z6 for n = 6, 7;
H2(An, Z) = Z2 for n ≥ 8.

Notes

[edit]
  1. ^ a b Robinson (1996), p. 78
  • ^ Beeler, Robert. "The Fifteen Puzzle: A Motivating Example for the Alternating Group" (PDF). faculty.etsu.edu/. East Tennessee State University. Archived from the original (PDF) on 2021-01-07. Retrieved 2020-12-26.
  • ^ Wilson, Robert (October 31, 2006), "Chapter 2: Alternating groups", The finite simple groups, 2006 versions, archived from the original on May 22, 2011, 2.7: Covering groups{{citation}}: CS1 maint: postscript (link)
  • References

    [edit]
    • Robinson, Derek John Scott (1996), A course in the theory of groups, Graduate texts in mathematics, vol. 80 (2 ed.), Springer, ISBN 978-0-387-94461-6
  • Schur, Issai (1911), "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen", Journal für die reine und angewandte Mathematik, 1911 (139): 155–250, doi:10.1515/crll.1911.139.155, S2CID 122809608
  • Scott, W.R. (1987), Group Theory, New York: Dover Publications, ISBN 978-0-486-65377-8
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Alternating_group&oldid=1171309658"

    Categories: 
    Finite groups
    Permutation groups
    Hidden categories: 
    CS1 maint: postscript
    Articles with short description
    Short description is different from Wikidata
    Articles lacking in-text citations from January 2008
    All articles lacking in-text citations
     



    This page was last edited on 20 August 2023, at 09:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki